Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Трехслойные стены кирпич узлы

Как утепляются трехслойные стены

Конструкция стены в три слоя весьма популярна. У таких стен отличный внешний вид, они долговечные, практичные, хорошо утеплены. Рассмотрим подробнее, как трехслойная конструкция возводится, как закладывается теплоизолятор внутри.

Внутренний слой из тяжелых материалов?

Трехслойная стена состоит из трех слоев. Первый слой (изнутри здания) несущий, рассчитывается на прочность, должен быть выполнен по проектным решениям, из крепких материалов требуемой толщины.

Этот слой не рекомендуется предусматривать из материалов имеющих низкую теплоемкость, так как понижение внутренней теплоемкости здания снижает комфортность.

Возведение этого слоя из гидрофобных (боящихся воды) материалов, например газобетона, керамзитобетона, требует особого контроля за обеспечением вентиляции или других мероприятий направленных на недопущение повышения его влажности.

Увлажнение может существенно снизить долговечность стен или даже повлечь за собой аварийную ситуацию, — нельзя допускать подобных ситуаций.

По сравнению с кирпичной кладкой легкие бетоны не дают большой экономии, особенно когда речь идет о трехслойной стене. Но проблемы могут создать существенные.

Применение кирпича


Обычный материал для внутреннего слоя – керамический кирпич. Чаще согласно проектному расчету для 1 -2 этажного здания достаточно толщины несущего слоя в 36 см, что соответствует кладке в 1,5 кирпича.

Но в соответствии с особыми мероприятиями, которые могут предусматриваться проектом, несущий слой одноэтажного здания (с мансардой) может быть выполнен и в один кирпич — до 25 см толщиной.

Наружный слой — фасадный, обычно делается из твердого облицовочного кирпича с морозоустойчивостью не ниже F50, имеющего отличный внешний вид.

Выкладка ведется обычно в пол кирпича с расшивкой швов (фигурными швами), толщина слоя 12 см. Но возможен вариант выкладки толщиной слоя и в 6 см специальным фасадным кирпичем или в ? обычного кирпича.

Связи слоев сквозь утеплитель

Между наружным и внутренними слоями трехслойной стены должны присутствовать множество механических связей. Достаточно предусмотреть гибкие связи. Жесткие из кирпича будут значительными мостиками холода, и утепление стены потеряет смысл.

Гибкие связи делаются из стекловолоконной арматуры или подобного не растягивающегося с течением времени материала. Их коэффициент теплопроводности составляет около 0,5 Вт/мС.

Для сравнения, стальная арматура такого же диаметра имела бы коэффициент теплопроводности на уровне 50 Вт/мС. Связи закладываются в швы между кирпичами на глубину в кладку 7 – 8 см.

Расстояние между связями по длине стены составляет 50 – 100 см, а по высоте обычно принимается 50 – 60 см. Чем толще слой утепления, чем больше расстояние между наружным и внутренними слоями, тем выше плотность установки связующей арматуры.

Какой утеплитель применить для трехслойной стены

Трехслойная стена является не разборной конструкцией. Замена, ремонт утеплительного слоя в ней будет крайне дорогим и проблематичным делом. Поэтому во время строительства стены нужно применить сразу же самые надежные утеплительные материалы.

Специалисты сходятся во мнении в том, что плотные минераловатные плиты лучше подходят для трудноремонтируемых конструкций длительной эксплуатации. И причин в пользу их выбора несколько.

Преимущества минеральной ваты

  • Качественные плиты из базальтовой ваты от известных производителей плотностью от 60 кг/м куб не растягиваются, не меняют форму со временем.
  • Срок службы минералов большой, фактически такой же, как и у кирпича.
  • Минераловатные плиты не едят грызуны, в них не селится живность, что критически важно для конструкции, которая не поддается ремонту.
  • Необходимо применять гидрофобизированные плиты, с водопоглощением не более 1% по объему, чтобы возможная роса не навредила утеплителю со временем.

Полистиролы, полиуретаны тоже возможный вариант, но с ними, по крайней мере, нужно принять особые меры по недопущению живности внутрь стены, что не всегда возможно, да и прекращение оттока пара через стену, хоть и небольшой, но все же шаг в не лучшую сторону по всем показателям…

Сколько потребуется утеплителя

Толщина слоя утеплителя рассчитывается исходя из нормативных требований по сопротивлению теплопередачи для данного региона. Например, сопротивление теплопередаче кирпичной стены из полнотелого кирпича составит 0,36 м / 0,7 Вт/мС = 0,51 м2С/Вт.

Для умеренного климата средней полосы сопротивление теплопередаче стены должно быть не менее 3,1 м2С/Вт.
Тогда сопротивление теплопередаче слоя утеплителя должно составить 3,1 – 0,5 = 2,6 м2С/Вт.

Толщина слоя утеплителя составит 0,04х2,7=0,1 метра. Принимаем к утеплению плиты из базальтового волокна толщиной 10 см.
Принятый к расчету их коэффициент теплопроводности на уровне 0.04 Вт/мС больше на 10 процентов, чем заявляет производитель. Здесь учитывается реальное увлажнение плиты во время эксплуатации на стене.

Выше приведен упрощенный расчет требуемой толщины утеплителя для ограждающей конструкции. Но в большинстве случаев, для частного строительства и решения бытовых вопросов утепления, точность этого расчета вполне приемлема.

Обеспечение вентиляционного зазора над утеплителем

Паропрозрачный утеплитель в трехслойной стене должен постоянно вентилироваться. Для нормальной вентиляции, беспрепятственного движения воздуха над утеплителем, величина вентиляционного зазора между слоем утепления и наружным слоем должна быть не менее 3см.

Для фиксации утеплителя и его постоянного прижатия к внутреннему слою, на межслойные связи поверх утеплителя надеваются пластиковые фиксаторы.

Внизу и вверху фасадного слоя делаются вентиляционные отверстия. Холодный воздух будет поступать к утеплителю через нижние продухи, далее, за счет нагрева от тепла поступающего сквозь утеплитель, возникнет устойчивая тяга вверх, вследствие чего утеплитель будет постоянно проветриваться. Необходимая площадь воздухоподающих отверстий не менее 40 см кв. на 10 м кв. стены. Такая же площадь и у воздухоотводящих.

Предотвращение продувки слоя

Для отдельных видов утеплителя производителем предусматривается применение супердиффузионной мембраны, роль которой предотвратить выдувку волокон утеплителя.

Если плиты нуждаются в подобной защите, значит утеплительный слой в процессе строительства должен быть накрыт такой мембраной с паропроницаемостью не ниже 1700 г/м2 сутки.

Также специалисты настоятельно рекомендуют применять ветрозащитную мембрану в системе вентилируемый фасад для предотвращения конвекционных утечек тепла из утеплителя (20% и больше) при плотности плит менее 80 кг/м куб в ветровых зонах до 5 и плотности плит 180 кг/м куб в любых ветровых зонах и для высотных зданий.

С пенополистиролом меньше проблем?


Как видим, минераловатные плиты в трехслойной стене применяются по проверенной технологии «вентилируемый фасад». Применение вдуваемого пенополиуретана или плит из экструдированного пенополистирола позволит уменьшить общую толщину стены за счет меньшей на 20 процентов толщины утеплителя (меньше коэффициент теплопроводности) и отсутствия вентиляционного зазора.

В этом случае прочные слои окажутся разделенными по пару, парообмен каждого слоя будет происходить внутри «своей» атмосферы. Но, как указывалось выше, присущие пластмассам недостатки в целом не делают их применение предпочтительным.

Остается заметить, что плиты перекрытий не должны внедряться в утеплитель и не выходить за внутренний слой стены. В процессе строительства недопустимо применить пародиффузионную мембрану низкого качества, уменьшить вентиляционный зазор, или не обеспечить вентиляционные отверстия в наружном фасадном слое.

Применение

Система трёхслойной слоистой кладки с утеплителем из каменной ваты

  1. Кладка из крупноформатных блоков
  2. Сплошное основание
  3. Однослойная теплоизоляция
  4. Однослойная гидроизоляция
  5. Однослойная теплоизоляция
  6. Штукатурно-клеевая смесь
  7. Крепежный элемент
  8. Вентиляционный зазор
  9. Устройство примыкания оконного блока
Читать еще:  Облицовка каменных стен кирпичом
Область применения:

Система ТН-ФАСАД Стандарт предназначена для теплоизоляции фасадов самонесущих ограждающих конструкции каркасно-монолитных зданий и сооружений различного назначения. В малоэтажном строительстве в качестве несущей ограждающей конструкции.

Состав:
Наименование слояНаименование материалаТолщина, ммКоэффициент расхода на 1 м 2
1Кладка из крупноформатных блоков
2Сплошное основание
3Однослойная теплоизоляцияЭкструзионный пенополистирол ТЕХНОНИКОЛЬ CARBON PROFпо проекту
4Однослойная гидроизоляцияБИКРОЭЛАСТпо проекту
5Однослойная теплоизоляцияПлиты из каменной ваты ТЕХНОБЛОК СТАНДАРТ / IZOVOL Ст-5050-250 *1,1
6Штукатурно-клеевая смесьОблицовочный кирпич
7Крепежный элементГибкие базальтопластиковые связи с фиксатором зазора4 шт.
8Вентиляционный зазор
9Устройство примыкания оконного блокаПена монтажная профессиональная ТЕХНОНИКОЛЬ 65 MAXIMUM всесезонная0,05 кг/пог. м

* Уточняйте возможность производства партии материала необходимых размеров/толщин.

  • Однослойная теплоизоляция: ТЕХНОБЛОК ПРОФ; ТЕХНОВЕНТ ОПТИМА; IZOVOL Ст-75; IZOVOL Ст-90
  • Однослойная теплоизоляция: Экструзионный пенополистирол ТЕХНОНИКОЛЬ CARBON ECO
  1. ТЕХНОНИКОЛЬ не является системодержателем системы ТН-ФАСАД Стандарт.
  2. Толщина теплоизоляции определяется согласно теплотехническому расчету.
Описание:

Система ТН-ФАСАД Стандарт представляет собой трехслойную конструкцию стены с внутренним теплоизоляционным слоем из плит каменной ваты. В качестве теплоизоляционного слоя применяются плиты их каменной ваты ТЕХНОБЛОК СТАНДАРТ / IZOVOL Ст-50. Наружную часть кладки (наружную версту) соединяют с внутренней верстой гибкими связями из базальтопластика с фиксатором зазора. Этот элемент устанавливается через теплоизоляционный слой и дополнительно поддерживает его в проектном положении.

Для предупреждения образования сплошного мостика холода в перекрытие при монолитных работах вставляются термовкладыши из экструзионного пенополистирола ТЕХНОНИКОЛЬ CARBON PROF. В малоэтажном строительстве (высотой до 9 м) систему можно возводить как несущий элемент здания. В таком случае перекрытия опираются на внутреннюю часть стены, наружная кладка возводится непрерывно на высоту здания. При многоэтажном строительстве система опирается на межэтажное перекрытие.

Классический вид фасаду придает кирпичная облицовка, при этом конструкция является вентилируемой, что позволяет не накапливать конденсат в утеплителе за счёт зазора между каменной ватой и облицовкой. Конвекция осуществляется при помощи специальных отверстий в вертикальных швах кладки.

Трёхслойные кладки, особенности устройства, достоинства и недостатки.

Традиционно наибольшей популярностью пользуются проекты загородных домов, в качестве материала внешних стен которых применена керамика или дерево, в последние годы всё большим спросом начинают пользоваться проекты домов из газобетона.

Рассмотрим каждый из стеновых материалов в конструкциях, с приведением стоимости одного квадратного метра.

Керамические стеновые материалы

Одним из самых старейших представителей этого вида является полнотелый кирпич. К его преимуществам можно отнести прочность марка на сжатие М100-М150, долговечность, технологичность, огромный опыт применения, и как следствие большое количество специалистов — каменщиков. Основным минусом полнотелого кирпича является недостаточно хорошие показатели теплопроводности λ=0,6 Вт/(м К), в результате чего полнотелый кирпич в конструкции внешних стен без теплоизоляционного слоя не применяется.

Стеновые конструкции, в которых возможно применение полнотелого кирпича.

Трёхслойная кирпичная кладка (термическое сопротивление конструкции 3,07 м 2 *С/Вт).

* — необходимо устройство вентиляционного зазора между слоем теплоизоляции и лицевой кладкой, с обеспечением свободной циркуляции воздуха в вент. зазоре.

Преимущества и недостатки.

Конструкция удовлетворяет современнным нормам по теплосбережению. Применение эффективной теплоизоляции позволяет уменьшить толщину стены, что уменьшает нагрузку на грунт. Недостатки: относительно непродолжительный срок службы теплоизоляции и сложность конструкции.

Калькуляция расходов на возведение трёхслойной кладки.

Кол-во на м 2

Цена с доставкой

Сумма (руб)

Итого материалы — 3 289,85 рублей/м 2 .

Кол-во на м 2

Стоимость

Сумма (руб)

Итого работы — 2 650,00 рублей/м 2 .

Итого материалы и работы — 5 939,85 рублей/м 2 .

Фасад мокрого типа (термическое сопротивление конструкции 3,07 м 2 *С/Вт).

  1. монолитно-армированный пояс с устройством упора.
  2. полнотелый керамический кирпич, также это может быть силикатный кирпич.
  3. дюбели для крепления фасадной теплоизоляции, расход 6-7 штук/м2.
  4. теплоизоляционный слой 100-120мм, в качестве которого можно применить минераловатные плиты или пенополистирольные плиты, как вспененного полистирола, так и экструдированного, благодаря лучшим параметрам паропроницаемости большее распространение в коттеджном строительстве получили минераловатные теплоизоляционные материалы.
  5. слой армирующей шпаклёвки с армирующей сеткой.
  6. декоративная штукатурка, клинкерная плитка, облицовочный камень.

Преимущества и недостатки.

Конструкция удовлетворяет современнным нормам по теплосбережению. Применение эффективной теплоизоляции позволяет уменьшить толщину стены, что уменьшает нагрузку на грунт. К недостаткам можно отнести ограниченный срок службы конструкции, нормативный срок эксплуатации фасадов мокрого типа до капитального ремонта 25 лет.

Калькуляция расходов на устройство фасада мокрого типа.

Кол-во на м 2

Цена с доставкой

Сумма (руб)

Итого материалы — 5 273,33 рублей/м 2 .

Кол-во на м 2

Стоимость

Сумма (руб)

Итого работы — 2 850,00 рублей/м 2 .

Итого материалы и работы — 8 123,33 рублей/м 2 .

Добиться обеспечения норм СНиП 23-02-2003 «Тепловая защита зданий» без теплоизоляционного слоя в конструкции, возможно, применив керамические крупноформатные поризованные блоки.

Конструкция внешней стены из керамических крупноформатных поризованных блоков Керакам СуперТермо30 (термическое сопротивление конструкции 3,284 м 2 *С/Вт).

  1. П-образный керамический поризованный блок выступающий в качестве опалубки монолитно-армированного пояса.
  2. теплоизоляционный слой: минераловатный утеплитель, экструдированный пенополистирол, вспененный пенопоплистирол.
  3. железобетонная плита перекрытия.
  4. керамический крупноформатный керамический блок Керакам СуперТермо30, в качестве кладочного раствора применяется «тёплый» кладочный раствор ЛМ21.
  5. кладка из лицевого кирпича.
  6. базальто-волокнистые связи, расход 5 штук/м 2 .

Преимущества и недостатки.

Конструкция удовлетворяет современнным нормам по теплосбережению, без применения эффективной теплоизоляции. Реальный срок эксплуатации дома до кап.ремонта 100 лет. За счёт крупного формата увеличивается скорость монтажных работ, уменьшается количество кладочного раствора, применение «тёплого» кладочного раствора устраняет мостики холода в кладке. Высокий процент пустотности уменьшает нагрузку на грунт. Благодаря примению самых теплоэффективных (Протокол испытаний СТ30 по теплопроводности), среди производимых в России, керамических блоков Керакам суперТермо30, уменьшается общая толщина стены, это делает возможным уменьшить толщину ленты фундамента, как следствие, существенным образом снижаются затраты на строительство.

Калькуляция расходов на возведение кладки с применением крупноформатных поризованных блоков Керакам СуперТермо30 Российского производства.

Многослойные наружные стены – какую выбрать?

Конструкции многослойных наружных стен

В статье рассмотрим из каких материалов следует выполнить конструкции наружных многослойных и однослойных стен дома. Наружные стены являются одним из важнейших конструктивных элементов дома.Существуют разные типы конструкций наружных стен – однослойные, двухслойные и трехслойные.

Почти 20-30% тепла уходит через наружные стены, поэтому особое внимание следует уделить теплоизоляции стен. Коэффициент теплопередачи наружных конструкций (чем он меньше, тем стена теплее) определяет, будет ли тепло в доме. Высокий параметр теплопередачи можно получить, возводя как однослойные, так и двухслойные наружные стены, а также трехслойные – достаточно выбрать качественный утеплитель для строительства дома. Качество утеплителя определяется показателем его плотности.

Как выбрать многослойную наружную стену для дома?

Подбирая материалы для стен – в зависимости от того, будет ли состоять из одного или нескольких конструкционных слоев – следует руководствоваться различными параметрами. Если планируете делать наружные стены однослойными, теплоизоляционный материал, из которого они должны быть изготовлены – играет одну из ключевых ролей в создании комфорта в вашем доме. Сохранение тепла в многослойных стенах, определяется толщиной и плотностью изоляции – поэтому при выборе материала для стен стоит сосредоточиться на долговечности, энергоеффективности и экологичности материала.

Читать еще:  Как закрыть кирпичи стены

Однослойные стены – как достичь тепла в доме?

Конструкция однослойной стены относительно проста – она ​​состоит из одного слоя каменной или кирпичной стены и отделочного слоя (штукатурка, сайдинга, краска или облицовки плиткой). Несущий слой выполняет одновременно изолирующую и защитную функцию. Однослойные стены быстро возводимые конструкции, так как не требуют затрат по утеплению стен. Но для реализации однослойных стен требуются знания и навыки строительных работа, что не менее важно следует соблюсти все правила по ведению кладки и не экономить на растворе. Неточности в конструкции стен могут привести к появлению мостиков холода (критических мест в стене, через которые уходит тепло), поэтому при укладке однослойных стен все работы должны выполняться качественно и надежно.

Однослойная наружная стена

Чтобы однослойные стены имели хороший коэффициент теплопередачи, приближённый к энергоэффективным домам, для этого требуются материалы с очень хорошей теплоизоляцией. На рынке также доступны газобетонные и керамзитобетонные блоки, благодаря которым можно возводить очень теплые однослойные стены – коэффициент теплопередачи составляет 0,19 м²∙K/Вт., при толщине стенки 48 см.

Двухслойная стена

Двухслойная стена состоит из несущей части толщиной 25-30 см (чаще всего это керамические блоки, силикатный кирпич, ячеистый бетон) и слоя теплоизоляции толщиной 12-20 см. Таким образом, общая толщина двухслойных стен может составлять 50 см. Самый популярный способ утепления стен, возводимых в два слоя, – это метод, называемый легким мокрым. Изоляция крепится к стенам с помощью клеевого раствора и специальных штифтов. Затем они покрываются цементно-известковым раствором, армируются сеткой, и покрываются штукатуркой.

Хорошим материалом для однослойной стены являются керамзитобетонные блоки утепленные пенополистиролом. Такой тип обычно имеет ширину около 40 см и позволяет получить коэффициент теплопередачи менее 0,2 м²∙K/Вт. На втором месте стоят керамические блоки с утеплителем из минеральной ватой. Стены из керамических блоков толщиной 440 мм достигают до 0,18 м²∙K/Вт.

Конструкция двухслойной наружной стены

Еще одним способом утепления двухслойных стен является так называемый сухой способ монтажа. Он заключается в монтаже каркаса (деревянного, стального или ПВХ) к стенам дома и размещении теплоизоляции между его элементами – чаще всего это минеральная или каменная вата. К конструкции обрешетки закрепляют элементы навесного фасада, составляющие отделочный слой (обычно сайдинг или облицовка плиткой). Изоляция размещается между элементами конструкций. Обычно укладывают два слоя утеплителя – каждый имеет толщину 5-6 см.

Конструкция двухслойной наружной стены

Трехслойные стены

Трехслойные стены, как уже стало понятно – состоят из трех слоев. Первый из них, это несущая часть, определяет, прежде всего несущую способность. Второй слой – утеплитель – отвечает за теплоизоляцию, а третий – отделочный слой, отвечающий за устойчивость наружных стен к внешним факторам. Благодаря такой конструкции трехслойная стена является наиболее эффективной – параметры теплоизоляции сравнимы с параметрами двухслойных стен, поэтому нет больших проблем с получением коэффициента стены на уровне 0,2. м²∙K/Вт. Кроме того, трехслойная конструкция это лучшая защита дома от влаги и шума.

Трехслойная наружная стена

Несущая часть обычно выполнена из керамического кирпича или силикатного кирпича, а так же газобетонных блоков. Конструкция может достигать до 30 см. В качестве утеплителя можно использовать полистирольные плиты или минеральную вату толщиной 12-20 см. Между утеплителем из минеральной (каменной ) ваты и фасадным слоем оставьте вентиляционный зазор 2-4 сантиметра – это позволяет влаге испаряться. Влага может проникать, чем разрушает конструкцию изнутри. Влага в наружной конструкции образовывает конденсат, поэтому следует позаботиться об обустройстве паробарьера. Фасадный слой обычно облицовывают клинкерным кирпичом толщиной 6,5-12 см. Общая толщина трехслойных стен начинается от 38 см. Для возведения наружных многослойных стен, можно использовать любые доступные материалы на рынке, главное выбрать качественный утеплитель и подобрать отделку по душе.

Ремонт и усиление облицовочной кирпичной кладки многослойных наружных стен зданий с применением гибких ремонтных связей

Ремонт и усиление облицовочной кирпичной кладки многослойных наружных стен зданий с применением гибких ремонтных связей

Для решения этих вопросов были предложены методики применения специальных ремонтных гибких спиралевидных связей английской фирмы BIT (рис. 1), которые в сравнении с резьбовыми шпильками и арматурными стержнями обладают рядом преимуществ [10].

Последние 30 лет спиралевидные связи широко применяются на Западе. В результате их применения можно обеспечить надежное закрепление облицовки во внутреннем слое стены (рис. 2), при усилении и ремонте многослойных наружных стен, усилить существующие трещины и выполнить устройство вертикальных температурных и деформационных швов без разбора облицовочной кладки стен, выполнить усиление арочных перемычек [10].

Рис. 1. Гибкие ремонтные спиралевидные связи BIT-ThorHelical

Рис. 2. Соединение слоев кирпичной кладки стены с помощью гибких ремонтных спиралевидных связей BIT-ThorHelical

Спиралевидные ремонтные гибкие связи изготавливаются из круглой нержавеющей проволоки, профиль которой в процессе прокатки принимает крестообразную конфигурацию с вытянутыми от центральной части плоскими ребрами, упрочненными в результате нагартовки. В результате форма связи обеспечивает простую и быструю установку посредством ударных воздействий ручным или механическим способом. Закрепление ремонтной связи происходит в результате самообразующегося механического замка между спиралью и винтообразным пазом, возникающего в процессе установки в материале основания (бетон и железобетон различных классов, включая легкие и ячеистые, керамические материалы, древесину). При установке связи в материале основания не возникает напряжений и распора (отсутствие концентраторов напряжения), что позволяет осуществлять установку вблизи края конструкции. Шаг расстановки связей и глубина заделки в основании определяются в соответствии с расчетом и на основе поверочных испытаний прочности заделки связи в материал основания [4], проведенных непосредственно на объекте.

Одно из наиболее ценных преимуществ в том, что после проведения ремонтных работ внешний облик здания практически остается без каких-либо следов ремонта, т. к. связи устанавливаются заподлицо в материал основания (кирпич, бетон, растворный шов), при этом место установки затирается мастиками с добавками пигментов, подобранными в цвет фасада.

Представленные решения являются унифицированными и требуют натурных испытаний прочности и деформативности представленных соединений, а также учета индивидуальных особенностей на каждом отдельном здании. Производство усиления возможно, как в двухслойной наружной стене, так и в трехслойной стене с внутренним утеплением [6, 7].

Применение ремонтных гибких связей рекомендуется применять в следующих случаях:

  • при усилении кирпичной кладки облицовки по полю стены путем дополнительного закрепления в основании (внутреннем слое многослойной фасадной стены);
  • при усилении кладки в зоне расположения горизонтальных и вертикальных трещин;
  • при замене фрагментов облицовки;
  • при организации вертикальных деформационных швов;
  • при усилении кладки в зоне перемычек над проемами.

Рассмотрим основные варианты применения гибких спиралевидных связей.

Дополнительное крепление облицовочной кирпичной кладки по полю стены в основании (внутреннем слое многослойной фасадной стены).

На участках наружных стен с недостаточным количеством гибких связей предлагается закрепление кирпичной облицовки во внутреннем слое наружной стены с помощью гибких спиралевидных связей BIT-Thorhelical на химических анкерах [2, 4, 10]. Связи рекомендуется устанавливать в шахматном порядке с шагом 500×500 мм на сплошных участках стен и с шагом 250×250 мм в зонах расположения оконных и дверных проемов.

Читать еще:  Что считать откосом стены

При установке связи во внутренний слой из ячеистого бетона монтаж обеспечивается с помощью ударного воздействия (рис. 3а), путем забивания связи во внутренний слой, при установке в основание из монолитного железобетона перед монтажом связи необходимо просверлить направляющее отверстие на требуемую глубину. В случае если внутренний слой выполнен из пустотелого кирпича, закрепление связи обеспечивается с помощью химических анкеров (рис. 3б) [2].


а)

б)

Рис. 3. Схема установки ремонтной связи: а) в ячеистые или легкие бетоны; б) в кладку из пустотелого кирпича.

Закрепление связи в наружной облицовке из пустотелого кирпича также обеспечивается с помощью химического состава, заполняющего предварительное отверстие, необходимое для монтажа связи во внутренний слой. Заполненное химическим составом отверстие затирается «заподлицо» с поверхностью кладки.

Крепление облицовочной кирпичной кладки при организации вертикальных деформационных швов.

В многослойных наружных стенах при утепляющем слое из эффективного утеплителя или материала с низким коэффициентом теплопроводности наружный кирпичный облицовочный слой в зимнее время года практически не прогревается воздухом из помещений, а в летнее время наоборот, подвергается воздействию высоких температур. В результате температурных колебаний в кирпичном облицовочном слое из-за изменения длины и объема материала возникают вертикальные трещины от температурных напряжений. Вертикальные и горизонтальные температурно-деформационные швы компенсируют эти изменения и тем самым предотвращают образование трещин в кладке [1, 8, 9, 11].

Расстояние между вертикальными температурно-деформационными швами зависит от конструкции многослойной стены и определяется расчетом на температурно-влажностные воздействия. В соответствии с данными расчетами расстояния между вертикальными температурно-деформационными швами в наружном облицовочном слое наружных стен для условий г. Москвы принимаются равными 10 м.

Для устройства вертикальных температурно-деформационных швов (рис. 4) – прорезаются вертикальные швы в кирпичной облицовке шириной 20мм на высоту этажа и на глубину кладки – 120мм, также прорезаются горизонтальные растворные швы кладки на глубину 70мм, длиной 110мм через каждые 4 ряда кирпича по высоте. Прорезанные горизонтальные растворные швы заполняются химическим составом на всю толщину. Армирующие стержни сначала устанавливаются в подвижную пластиковую трубку. Выполняется монтаж стержня с пластиковой трубкой в подготовленные горизонтальные швы на расстояние 50мм от наружной поверхности кирпича, таким образом, чтобы с правой стороны вертикального шва располагалась трубка. При этом расстояние от свободного конца трубки до стержня составляет 30-40мм, что позволяет воспринимать температурные деформации при расширении участка облицовки [10.]

Рис. 4. Схема устройства температурных деформационных швов (ТДШ):

После установки армирующих стержней горизонтальные швы заполняются химическим составом и затираются кладочным раствором «заподлицо». На всю высоту вертикального шва устанавливается упругая прокладка с обжатием 2/3 от ее диаметра и наносится герметизирующий слой нетвердеющей мастики. Далее выполняется установка точечных связей в шахматном порядке по высоте шва, длина связи принимается в зависимости от глубины анкеровки во внутреннем слое стены.

Усиление облицовочной кладки в зоне расположения горизонтальных и вертикальных трещин.

При наличии трещин, шириной раскрытия менее 3мм, целесообразно выполнить усиление кладки на этих участках. На рис. 5 показаны конструктивные решения по усилению участков кирпичной облицовки с трещинами менее 3мм с применением армирующих стержней BIT-TCS. Выполняется прорезка горизонтальных растворных швов кладки по обе стороны трещины, глубиной 70мм, длиной 110мм через каждые 4 ряда кирпича по высоте. При этом трещина располагается в середине растворного шва. Прорезанные горизонтальные растворные швы заполняются цементно-песчаным раствором на всю толщину. Армирующие стержни устанавливаются в подготовленные горизонтальные швы на расстояние 50мм от края наружной поверхности кирпича [10].

Рис. 5. Схема усиления трещин шириной раскрытия менее 3мм.

После установки армирующих стержней горизонтальные швы заполняются цементно-песчаным раствором «заподлицо». После чего выполняется установка точечных связей диаметром Æ9мм в шахматном порядке по высоте трещины, длина связи принимается в зависимости от глубины анкеровки во внутреннем слое стены.

При наличии трещин в наружной облицовочной кладке шириной раскрытия более 3мм выполняется перекладка этого участка (рис. 6). При этом закрепление новой кладки во внутреннем слое обеспечивается с помощью гибких спиралевидных связей BIT-Thorhelical Æ9мм, расположенных в шахматном с шагом 500×500мм на сплошных участках и с шагом 250×250 мм в зонах расположения оконных и дверных проемов. На участках новой кирпичной кладки применяют кирпич с утолщенной стенкой и пустотностью не более 15%, в целях предотвращения разрушения кирпича при попадании атмосферной влаги в пустоты в осенне-весенние периоды года. Армирование перекладываемых участков кладки выполняют металлической сеткой с ячейкой 50×50мм через каждые 4 ряда по высоте [4, 10].

Рис. 6. Схема перекладки наружной кирпичной облицовки на участках разрушений и при наличии трещин шириной раскрытия более 3мм

На участках наружных многослойных стен с недостаточным утеплением возможна замена утеплителя только путем разбора существующей кладки кирпичной облицовки [1, 8, 11]. При монтаже утеплителя, расположенного между наружным и внутренними конструктивными слоями стен фасадов, его закрепление выполняется на поверхности внутреннего слоя с помощью тарельчатых фасадных дюбелей. Шаг расположения – 500×500 мм в шахматном порядке. После монтажа утеплителя выполняется новая кладка кирпичной облицовки по схеме, описанной выше, с применением ремонтных гибких связей BIT-Thorhelical Æ9мм.

  1. Горшков А.С, Кнатько М.В, Рымкевич П.П. Оценка долговечности ограждающих конструкций зданий. // Стройпрофиль №3 (73). 2009.
  2. Грановский А.В. Пути повышения надежности анкерных креплений Журнал «Технологии строительства» 2008 №4 (59) / 2008 с. 13-14.
  3. Давидюк А.А. Анализ результатов обследования многослойных наружных стен многоэтажных каркасных зданий. // Жилищное строительство, М., №6, 2010г.
  4. Ибрагимов А. М. Оптимизация количества точечных подкрепляющих связей в динамических задачах для плоского стержня (тезисы). // Тезисы докладов зонального семинара «Вопросы оптимального проектирования конструкций и расчет их рационального усиления»: / Пенз.инж.- строит. ин-т.- Пенза,1990.-С. 22.
  5. Ибрагимов А.М., Федосов С.В., Гнедина Л.Ю. Проблемы трехслойных ограждающих конструкций. // Журнал//Жилищное строительство. 2012. №7 – С.9-12.
  6. Король Е.А., Харькин Ю.А. Совершенствование технологии возведения энергоэффективных ограждающих конструкций в монолитном строительстве. Сборник докладов ХХ Российско-Польско-Словацкого семинара «Теоретические основы строительства». Жилина. 2011. C. 401–406.
  7. Король Е.А., Харькин Ю.А. Технологическая и организационная эффективность возведения многослойных наружных стен в монолитном строительстве // Строительство и реконструкция. 2013. №6. C. 3–8.
  8. Кузнецова Г. Слоистые кладки в каркасно-монолитном домостроении. // Журнал «Технологии строительства» №1, 2009.
  9. Обозов В.И., Давидюк А.А., Анализ повреждений кирпичной облицовки фасадов многоэтажных каркасных зданий. //Сейсмостойкое строительство. Безопасность сооружений, М., №3, 2010.
  10. Пономарев О.И., Павлова М.О. Рекомендации и технические решения по восстановлению эксплуатационной надежности облицовки из пустотелого керамического кирпича зданий с многослойными наружными стенами. // ЦНИИСК им. В.А. Кучеренко, М., 2009.
  11. Яворский А.А., Киселев С.А. Актуальные задачи обеспечения надежности фасадных теплоизоляционно-отделочных систем // Вестник МГСУ. 2012. №12. С 78-84.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector