Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса рыхлых пород

Угол естественного откоса рыхлых пород

ФИЗИЧЕСКИЕ СВОЙСТВА ГРУНТОВ — ЧАСТЬ 2

Водопроницаемость — способность грунта пропускать воду. Скорость просачивания воды, отнесенную к гидравлическому градиенту, называют коэффициентом фильтрации К.

Коэффициент фильтрации у разных грунтов различный: например, у глины 10 -6 . 5 -7 , а у речного песка 10,2 м/сут. Разница в 1 млн. раз и больше. Это важнейшее свойство грунтов обязательно следует учитывать при проектировании и строительстве искусственных сооружений, зданий и дорог.

Грунты по водопроницаемости делят на дренирующие и недренирующие. К дренирующим грунтам относят крупнообломочные породы, гравелистые, крупные и средние пески, а также мелкие пески и супеси, у которых коэффициент фильтрации более 0,5 м/сут. Недренирующие грунты — это суглинки и глины, а в отдельных случаях мелкие пески и супеси, если коэффициент фильтрации меньше 0,5 м/сут. У дренирующих грунтов частицы друг с другом не связаны и большей частью сыпучи, поэтому их называют несвязными. Недренирующие грунты, наоборот, имеют частицы, связанные друг с другом и поэтому их называют связными грунтами. Коэффициент фильтрации несвязных грунтов определяют в лабораторных условиях в приборе Тима, трубке Каменского, трубке спецгео, связных грунтов— в приборе Тима — Каменского и др. [1, 26].

Влагоемкость — количество воды, которое способен удерживать грунт в своих порах. Наибольшая влагоемкость у глинистых грунтов. Она составляет 35 % и более. У песчаных грунтов влагоемкость сравнительно невелика, 12. 16%. Грунты с большой влагоемкостью малопригодны для сооружения земляного полотна дорог. При использовании таких грунтов в качестве оснований для сооружения должна быть проявлена определенная осмотрительность. Для определения вла-гоемкости в инженерной практике наибольшее распространение получили следующие методы: высоких колонн, влагоемких сред и центрифугирования [1, 26].

Размокание — способность грунта при большом увлажнении терять связность и превращаться в текучую массу, не способную воспринимать внешние нагрузки. Особенно очень сильно этому явлению подвержены пылеватые грунты. Размо-каемость определяют в приборе ПР конструкции Д. 3. Знаменского— В. И. Хаустова и в приборе конструкции С. И. Синельникова [1, 26].

В соответствии с ГОСТ 5180—84 различают.

Разрыхляемость грунтов — увеличение объема грунта при нарушении естественной структуры. Значения приращения объемов даны в табл. 3.2.

Угол естественного откоса — угол между основанием и откосом, образующийся при отсыпке рыхлого грунта, зависит от вида грунта и его влажности. Определяют его прибором УО конструкции Знаменского [26] и другими приборами. Примерные углы откоса приведены в табл. 3.3.

Липкость грунтов — способность грунтов прилипать к поверхности различных предметов и в первую очередь к колесам транспорта и к рабочим органам дорожно-строительных

машин. При определении липкости измеряют усилие, необходимое для отрывания прилипшего предмета от поверхности грунта. Липкость характерна для глинистых и отчасти для пылеватых грунтов, находящихся в увлажненном состоянии. Липкость начинает проявляться при влажности несколько большей границы раскатывания и достигает максимума при влажности несколько меньшей границы текучести. Грунты удовлетворительные в дорожно-строительном отношении, имеющие наибольшую липкость при влажности 15. 30%, не должны иметь липкость более 0,6. 0,8 Н/см2. Липкость грунтов определяют в приборе Охотина.

3.3. УГОЛ ЕСТЕСТВЕННОГО ОТКОСА НАСЫПНЫХ ГРУНТОВ, ГРАД

Свойства грунтов

Свойства грунта — это особенности грунта, обусловленные его составом, взаимоотношением и взаимодействием слагающих грунт компонентов (твердых, жидких и газообразных). Различают физические, механические, магнитные, электрические, водные и др. свойства. Здесь мы остановимся на физических и механических свойствах, поскольку на их основании производятся расчеты фундаментов, подпорных стенок и других элементов сооружений, взаимодействующих с геологической средой. Кроме того, свойства являются исходными данными (не единственными, но очень важными) для изучения и прогнозирования развития экзогенных геологических процессов.

Физические свойства грунтов

Физические свойства грунтов — особенности грунтов, определяющие их поведение в естественных условиях и при взаимодействии с продуктами инженерной и хозяйственной деятельности человека. Ниже приведены основные физические свойства грунтов.

1. Гранулометрический состав (для дисперсных грунтов) — количественное содержание в грунте первичных частиц по фракциям (размерам зерен), выраженное в процентах от общей массы грунта.

2. Плотность . При этом различают плотность грунта и плотность скелета грунта (т.е. частиц грунта).

3. Пористость и коэффициент пористости. Пористость характеризует объем пор в единице объема грунта, а коэффициент пористости — отношение объема пор к объему твердой компоненты.

Читать еще:  Типовые решения укрепления откосов автомобильных дорог

4. Влажность . Различают естественную влажность — т.е. влажность образца на момент его отбора из горной выработки (причем она может быть весовой, т.е. отношение массы воды к массе скелета грунта, или объемной, т.е. отношение объема воды в грунте к объему всего грунта); степень влажности (коэффициент водонасыщения) — относительную долю заполнения пор водой в данном грунте; гигроскопическую влажность — отношение массы воды, удаляемой из образца воздушно-сухого грунта, высушенного при температуре 105 градусов до постоянной массы, к массе высушенного грунта.

5. Пределы пластичности (только для глинистых грунтов). Пластичность — это способность грунта деформироваться без разрыва сплошности под воздействием внешних сил и сохранять полученную форму после прекращения воздействия. Влажность, при которой грунт переходит из пластичного состояния в текучее называется верхним пределом пластичности . Влажность, при которой грунт переходит из пластичного состояния в твердое — влажность нижнего предела пластичности . Разность между значениями влажности для верхнего и нижнего пределов называется числом пластичности . Показатель консистенции — отношение разности весовой влажности и влажности нижнего предела к числу пластичности.

6. Набухаемость грунтов (только для глинистых) — способность грунтов увеличивать свой объем при замачивании. при этом развивается давление набухания.

7. Усадочность (для глинистых и органогенных грунтов) — способность грунтов уменьшать свой объем при обезвоживании.

8. Размокаемость — способность грунтов при замачивании в спокойной воде терять свою связность и превращаться в рыхлую массу.

9. Размягчаемость — способность скальных грунтов снижать свою прочность при взаимодействии с водой.

Механические свойства грунтов

Механические свойства грунтов — это те свойства, которые проявляются при приложении к грунтам нагрузок. Основные свойства:

1. Сжимаемость дисперсных грунтов — способность уменьшаться в объеме под действием внешнего давления. Компрессионная сжимаемость (компрессия) — способность грунта сжиматься под постоянной, ступенчато возрастающей нагрузкой.

2. Просадочность — способность лессовых и других пылеватых грунтов к уменьшению объема при дополнительном увлажнении. Различают просадки при природном давлении (от веса вышележащего грунта) и дополнительном (от веса сооружения).

3. Прочность — способность грунта сопротивляться разрушению под влиянием механических напряжений. Параметры прочности соответствуют критическим напряжениям, т.е. тем, при которых происходит разрушение грунта.

4. Модуль упругости (Е) — отношение напряжения, при котором начинается разрушение, к разности относительной деформации конца и начала разгрузки.

5. Модуль общей деформации (Ео) — отношение разности конечного и начального напряжений к разности конечной и начальной относительной продольной деформации.

6. Угол внутреннего трения — параметр линейной зависимости сопротивления сдвигу от вертикальной нагрузки. Для песчаных грунтов равен углу предельного откоса.

7. Сцепление — характеристика структурных связей грунта.

В.В. Дмитриев, Л.А. Ярг. Методы и качество лабораторного изучения грунтов: учебное пособие. — М.: КДУ, 2008. — 542 с.

Е.М. Пашкин, А.А. Каган, Н.Ф. Кривоногова. Терминологический словарь-справочник по инженерной геологии. — М.: КДУ, 2011. — 952 с.

Угол естественного откоса рыхлых пород

  • Технология СП
    • Лекции ТСП
      • ТСП
      • Земляные роботы
      • Скреперы
      • Комплексно-механизированные работы
      • Организация строительных процессов поточным методом
      • Производство работ землеройными машинами
      • Транспортировка и уплотнение грунта
      • Бетонные работы в гидромелиоративном строительстве
      • Строительство оросительных каналов
      • Строительство земляных плотин
      • Строительство узлов ГТС
      • Строительство основных сооружений гидроузлов
      • Хворостяные и габионные работы
    • Методички
      • Технологія будівництва насосної станції зрошуваної ділянки
      • Організація і технологія будівельних робіт
      • Технология строительства насосной станции
      • Организация и технология строительных работ
  • Организация СП
    • Лекции ОСП
      • Система водохозяйственных организаций и их функции
      • Проектирование, состав, порядок разработки, согласования и утверждения проектной документации
      • Состав и содержание (ПОС) и (ППР)
      • Проектирование стройгенпланов
      • Планирование производства работ во времени. Календарные планы
      • Правила определения стоимости строительства
    • Методички
      • Проект організації будівництва зрошувальної системи
      • Проект организации строительства оросительной системы
  • Статьи
    • Пенобетон
    • Технология строительства закрытого дренажа
    • Организация и технология работ при строительстве горизонтального дренажа
    • Производство работ по строительству дренажа из витых ПВХ труб
    • Строительство закрытой оросительной сети
    • Техника безопасности в мелиоративном строительстве
    • Асбестоцементные трубопроводы
    • Технологические правила производства бетонных работ при возведении ГТС
    • Технология водопонижения и выбор эффективного оборудования
    • Механическое оборудование для забивки свай
    • Машины для уплотнения грунта
    • Устройство машин для уплотнения грунта
    • Студенческие статьи
    • Разное
    • Отделка балкона сайдингом
    • Предохранение древесины от гниения
    • Организация и технология осушительных работ
    • Инновации в строительстве
    • Ремонтные работы
    • Отделочные работы
    • Строительство домов и дач
  • Конференции
    • Перспектива-6
    • Перспектива-7
    • Перспектива-8
    • Перспектива-9
    • Перспектива-10
    • Перспектива-11
    • Перспектива-12
    • Интернет-конференции
Читать еще:  Откосы поставить для межкомнатных дверей

Главное меню

  • Главная
  • Техника безопасности
  • Насосные установки
  • ГТС
    • Часть 1
    • Часть 2
  • Опускные колодцы
  • Карта сайта

Строительные работы

  • Ремонт автодорог
  • Земляные работы
  • Подводное бетонирование
  • Проектирование автомобильных дорог
  • Строительство автомобильных дорог
  • Устройство водоснабжения
  • Керамика в доме
  • Транспортные работы в строительстве
  • Бетонные работы
  • Электричество в доме
  • Устройство канализации
  • Теплые полы
  • Легкие металлоконструкции

Угол внутреннего трения

Угол внутреннего трения характеризует трение между частицами грунта и в большей степени зависит от величины вертикального давления на грунт. Значение его для разных грунтов колеблется от 15 до 43°. Угол внутреннего трения и сцепление С вместе составляют сопротивление грунтов сдвигу.

По ее величине назначается безопасная крутизна откосов выемок и насыпей. Сопротивление грунта внешним сдвигающим силам определяется по закону Кулона:

Плывуны

Плывуны — это насыщенные водой грунты, при вскрытии приобретающие свойства вязкой жидкости.

Они представляют собой большую опасность при выполнении строительных работ. Если плывуны вскрываются подземными выработками, то они сравнительно быстро заполняют её, а вышележащие массы начинают сдвигаться и тоже приходят в движение. В Ленинграде в 1974 г. при строительстве метро проходили подземную выработку в плывунах на глубине примерно 80 м после их замораживания. Однако на одном участке эти пески оказались не промороженными и образовался прорыв. Тысячи кубических метров плывунных грунтов быстро заполнили часть готовой выработки, а па поверхности произошло оседание пород с образованием мульды.

При строительстве Северо-Муйского тоннеля протяженностью 15,3 км было вскрыто несколько десятков разломов, заполненных дезинтегрированным до песка и глины грунтом. Обильно водонасыщенные грунты при вскрытии переходили в плывунное состояние. Наиболее опасными по стабильности перехода в плывунное состояние являлись нарушения, заполненные водопасыщенным грунтом песчано-глинистого состава с содержанием глинистых частиц 3-12% и более. Так, например в 1979 г. выброс плывуна в тоннеле составил 12000 за 10 минут. Вынос водонасыщенного песка повлек за собою человеческие жертвы. В 1986 г. выброс плывуна из разломов превысил 8000 . В 1987 г. во время ведения буро-взрывных работ про­изошел выброс плывуна. В результате на 100 м от забоя была разброшена буровая установка и породопогрузочная машина массой 27 т.

Установлено, что плывуны — это слабые, неустойчивые породы, требующие специальных методов ведения строительных работ и специальных мероприятий по обеспечению устойчивости сооружений.

В плывунное состояние могут переходить пески, супеси, лессы, суглинки, озерные илы, глины.

Таким образом, плывуны — это не какой-либо определенный тип горной породы, а особое состояние породы.

На практике чаще всего приходится иметь дело с плывунными песками и особенно с песками, содержащими некоторое количество коллоидных частиц. При всем многообразии гранулометрического состава плывунов для всех типов плывунных унтов характерно одно общее качество — частицы этих грунтов в силу различных причин при вскрытии горными выработ-1ми оказываются разделенными прослойками свободной воды, то обусловливает или полное исчезновение структурных связей, или уменьшение их настолько, что они не в состоянии противостоять тем напряжениям, которые приводят плывуны в движение.

Плывуны очень осложняют процесс проходки горных выработок и строительство сооружений. При проходке котлованов происходит обрушение их стенок, разжижение грунтов при сотрясении, выполаживание откосов, заплывание котлована грунтом. Так, например, при строительстве Химкинский плотины произошло оплывание супесей в котловане с образованием угла .Оплывание произошло в результате сотрясения от бетономешалки.

Значительные затруднения возникают и при вскрытии плывунов буровыми скважинами. В этом случае в обсадных трубах образуются «пробки» вследствие того, что плывуны из забоя нажины устремляются вверх по обсадной трубе, обволакивают буровой снаряд и происходит его «прихват».

Давление плывунов часто вызывает искривление стволов шахт, разрушает крепление подземных горных выработок.

Проявление плывунности грунтов может привести к деформации и даже разрушению сооружения. Примером может по служить строительство на Ленинских горах в Москве стометрового лыжного трамплина. Когда трамплин был уже построй строители приступили к срезке грунта в нижней части склона, которому нужно было придать кривизну, обеспечивающую безопасное приземление лыжников. Подрезкой были вскрыты плывунные грунты, устремившиеся в выемку так быстро, что рабочие не успели вывести из нее экскаватор.

Читать еще:  Откос двери по маякам

Переход грунтов в плывунное состояние возможен при одновременном сочетании следующих четырех факторов:

— благоприятные условия залегания пород;

— наличие разностей напоров подземных вод;

— определенный состав пород;

— определенное состояние рыхлых пород.

Под благоприятными условиями залегания следует понимать обнаженность пород, вскрытых горными выработками, буровыми скважинами или какими-нибудь естественными процессам например, размывом. Если плывуны залегают глубоко и не вскрываются, то плывунность пород не проявляется. Очень часто при строительстве, опасаясь осложнений, сооружения проектируют таким образом, чтобы не вскрывать породы, которые могут перейти в плывунное состояние.

Наличие разности напоров подземных вод также может служить причиной перехода грунтов в плывунное состояние. Разность напоров во многих случаях зависит от геологического строения и геоморфологических условий местности. Следует также иметь в виду, что естественные гидрогеологические условия могут быть изменены в процессе строительства, и тогда устойчивые горные породы могут перейти в плывунное состояние. Так, например, при откачке воды из котлованов может возникнуть разность напоров, что может привести к переходу грунтов в плывунное состояние.

Классификация плывунов

Перечисленные грунты могут перейти в плывунное состояние при наличии избыточного увлажнения их. Анализ причин, которые вызывают переход грунтов в плывунное состояние, позволили А.Ф. Лебедеву подразделить плывуны на истинные ложные.

Истинные плывуны

Истинные плывуны. Группу истинных плывунов составляют рыхлые горные породы — глинистые пески, супеси, суглинки, глины. Они переходят в плывунное состояние не только под воздействием гидродинамического давления, но, главным образом, из-за наличия в их составе минеральных и органических коллоидов. Коллоиды присутствуют в форме коллоидно-дисперсных минералов типа глауконита и монтмориллонита, а также виде гидроокиси Al, Fe и органических соединений. Все они придают частицам плывунов подвижность и, включая большое количество воды, способствуют растяжению структурной сетки.

Это, в свою очередь, обусловливает уменьшение механическое сцепления между частицами. Вода, присутствующая в плывунных грунтах, находится в связанном состоянии, что затрудняет ее удаление.

Истинные плывуны обладают следующими особенностями:

1.Пористость 36-58%, коэффициент пористости 0,67-1,39.

2.Наличие органических и минеральных коллоидов.

3.Наличие частиц размером менее 5 мкм в количестве не менее 3%.

4.Величина максимальной молекулярной влагоемкости превышает 3%.

5.Присутствие коллоидов в составе истинных плывунов обусловливают слабую фильтрационную способность их. Коэффициент фильтрации для истинных плывунов не превышает см/с (0,9-9 см/сут). Чрезвычайно слабая водопроницаемость их и большая водоудерживающая способность исключает возможность осушения плывунов обычными способами.

6.Истинные плывуны обладают очень низким сопротивлением сдвигу. Предельное сдвигающее напряжение не превышает 0,005 МПа.

7.Влажность истинных плывунов близка к пределу текучести.

8.Угол естественного откоса изменяется от (3-4)° до (8-9)°.

9.Плотность истинных плывунов составляет 1,8-2,2 г/см3.

10.Истинные плывуны своеобразно ведут себя при забивке в них свай. При частых ударах небольшой силы плывун приходит в движение и свая легко погружается в грунт. После окончания забивки происходит остановка подвижек и свая приобре­ла большую несущую способность.

11.Кусочек плывуна, извлеченный из котлована, имеет вид слабовлажного грунта, вода из него не выступает, но если по нему похлопать ладонью, он расплывается и растекающиеся края, каплями падают с руки.

12.При высыхании истинные плывуны сильно цементируются вследствие склеивающего действия коллоидов.

Внешне истинные плывуны обнаруживаются по следующий характерным признакам:

— При взмучивании в дистиллированной воде истинный плывун образует суспензию, которая не осаждается в течение ряда месяцев.

— В истинных плывунах благодаря наличию коллоидных частиц вода в котлованах обычно мутная.

Ложные плывуны

Ложные или псевдоплывуны представляют собой преимущественно среднезернистые или тонкозернистые пески. Переход их в плывунное состояние происходит под влиянием гидродинамического давления потока подземных вод т.е. в результате наличия гидравлического градиента, возникающего при вскрытии выемки, котлована, траншеи, который, взвешивая частицы грунтов, устраняет трение между ними.

1.При взмучивании в дистиллированной воде ложный плывун образует суспензию, которая осветляется в десяти сантиметровом слое в течение 2-3 дней;

  1. В котлованах, вскрывающих ложные плывуны, вода прозрачная или слабо мутная, быстро светлеющая;
  2. Ложные плывуны сравнительно хорошо отдают воду, и при естественном или искусственном снижении гидравлического (напорного) градиента они легко переходят в устойчивое состояние.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector