Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса клинкера

1.10. Угол естественного откоса

Угол естественного откоса или угол покоя – э то угол между плоскостью основания штабеля и образующей, который зависит от рода и кондиционного состояния груза. Угол естественного откоса – максимальный угол наклона откоса гранулированного материала, не обладающего сцеплением, т. е. свободно текучего материала. Рыхлые и пористые навалочные грузы имеют больший угол покоя, чем твердые кусковые грузы. С увеличением влажности угол покоя растет. При длительном хранении многих навалочных грузов угол покоя за счет уплотнения и слеживаемости возрастает. Различают угол естественного откоса в покое и в движении. В покое угол естественного откоса на 10 – 18° больше, чем в движении (например, на ленте транспортера).

На практике данными о величине угла естественного откоса пользуются при определении площади штабелирования груза, количества груза в штабеле, объема внутритрюмных штивочных работ, при подсчете величин давления груза на ограждающие его стенки, при расчетах остойчивости судов, учитывающих перемещение груза при крене судна, а также при расчетах погрузочно-разгрузочных и транспортирующих устройств.

Справочные данные об углах естественного откоса для одних и тех же насыпных грузов в разных источниках иногда существенно отличаются друг от друга, так как замеры углов производятся различными методами и при разном исходном состоянии исследуемого материала. Например, для пшеницы величина угла естественного откоса, по данным различных авторов, изменяется от 16 до 38°, для углей – от 30 до 45°, для рудных концентратов – от 25 до 50°, для некоторых видов руд – от 30 до 45° и т.д.

Величина угла естественного откоса груза зависит от формы , размера , шероховатости и однородности грузовых частиц, влажности массы груза, способа его отсыпки , исходного состояния и материала опорной поверхности .

Применяются различные методы определения величины угла естественного откоса; к числу наиболее распространенных относятся способы насыпки и обрушения .

Экспериментальное определение сопротивления сдвигу и основных параметров груза производится обычно метода-

ми прямого среза , одноосного и трехосного сжатия .

Испытания свойств груза методами прямого среза применимы как к идеальным, так и к связным сыпучим телам. Метод испытания на одноосное (простое) сжатие – раздавливание применим только для оценки общего сопротивления сдвигу связных сыпучих тел при условном допущении, что во всех точках испытываемого образца сохраняется однородное напряженное состояние. Наиболее надежные результаты испытаний характеристик связного сыпучего тела дает метод трехосного сжатия , позволяющий исследовать прочность образца груза при всестороннем сжатии.

Определение угла естественного откоса мелкозернистых веществ (размеры частиц менее10 мм) производится с помощью « наклонного ящика ». Угол естественного откоса в этом случае– угол, образованный горизонтальной плоскостью и верхней кромкой испытательного ящика в тот момент, когда только начнется массовое осыпание вещества в ящике. Размеры ящика: длина 600 мм, ширина 400 мм, высота 2000 мм. С помощью угломера измеряют угол между верхней кромкой ящика и горизонтальной плоскостью с точностью до0,5 ° . Угол естественного откоса рассчитывают как среднеарифметическое из трех измерений и округляют до0,5 ° .

Судовой метод определения угла естественного откоса вещества используют при отсутствии«наклоняемого ящика». В этом случае угол естественного откоса– это угол между образующей конуса груза и горизонтальной плоскостью. Образец испытуемого вещества высыпают так, чтобы образовался начальный конус. Затем оставшуюся часть очень осторожно высыпают с высоты нескольких миллиметров на вершину конуса так, чтобы форма конуса была симметричной. Угол измеряется в четырех точках на уровне полувысоты конуса, расположенных вокруг конуса с шагом 90 ° . То же повторяется с двумя другими пробами. За величину естественного откоса принимают среднее арифметическое двенадцати измерений, округленное до 0,5 ° .

Практика производства замеров углов естественного откоса в натурных условиях показывает, что их величина несколько изменяется в зависимости от метода отсыпки груза (струей или дождем), массы исследуемого груза, высоты , с которой производится экспериментальная отсыпка.

Для определения угла естественного откоса в условиях порта рекомендована следующая методика. Зерно из бункера объемом 2 м 3 высыпается с высоты2,5 м через отверстие400х400 мм на ровную бетонную или асфальтированную площадку. Под углом естественного откоса понимается среднее арифметическое значение углов наклона к горизонту образующих зернового конуса, измеренных с четырех его сторон. Практическое использование методики показало, что она успешно может быть применена для сухих насыпных грузов со сравнительно однородными частицами ограниченного размера, а для увлажненных и крупнокусковых грузов пользоваться этим методом затруднительно из-за зависания материала. Поэтому для производства отсыпки груза при определении угла естественного откоса более целесообразно использовать ленточный или скребковый транспортер , обеспечивающий сбрасывание груза с высоты 2,5 м.

Угол естественного откоса можно определить и другим способом . Например, зерно насыпается в ящик с размерами 400х400х1000 и отверстием 300×400, расположенным внизу одной из стенок. После открытия задвижки зерно высыпается в отгороженный двумя стеклянными стенками лоток. Угол наклона поверхности зерна к горизонту принимается за угол естественного откоса a .

Для быстрых измерений удобен способ Мооса , при котором зерно насыпают в прямоугольный ящик со стеклянными стенками размерами 100х200х300 мм на 1/3 его высоты. Ящик осторожно поворачивают на90° и измеряют, угол между поверхностью зерна и горизонтальной(после поворота) стенкой. Опыты проводят при всех указанных способах по 3 раза.

В лабораторных условиях для определения углов естественного откоса используют приборы различных систем, общим недостатком которых является возможность производства экспериментов только с грузами, меющими относительно небольшие и однородные грузовые частицы.

Наиболее распространенными методами определения угла естественного откоса в лабораторных условиях являются следующие.

1. В ящик прямоугольной формы размером 10х20х30 мм (или больше) насыпают исследуемый материал так, чтобы свободная его поверхность была горизонтальной, а затем осторожно поворачивают его на угол45 или 90° и после прекращения осыпания груза определяют угол естественного откоса a с помощью транспортира или путем замера высоты h и длины L заложения откоса и вычисления тангенса угла a (tg a = L/h)

Читать еще:  Размеры откосов для входных дверей

2. Диск диаметром 10 см (или больше), имеющий вертикальный тарированный стержень, опускают в стеклянную банку и засыпают исследуемым материалом. Затем диск плавно вынимают. Высота оставшегося на диске конуса материала показывает величину угла естественного откоса, значения которого нанесены на стержне.

3. В воронку с диаметром трубы 5 мм (или больше, в зависимости от гранулометрического состава материала) осторожно засыпают исследуемый материал, и затем воронку медленно поднимают по мере образования конуса груза. Полученный таким образом конус замеряют угломером с четырех сторон и среднее значение принимают за величину угла естественного откоса исследуемого материала.

Вне зависимости от метода определения угла естественного откоса каждый опыт необходимо проводить не менее трех раз для получения наиболее характерных средних значений.

1.11. Объемно-массовые характеристики грузов

К объемно-массовым характеристикам грузов относится масса , линейные (габаритные) размеры , удельные объемы . Все грузы принимают к перевозке по массе или по счету мест .

Штучные грузы принимают счетом мест с указанием их массы. При сдаче груза получателю судно не несет ответ-

ственности за его массу, если число мест соответствует числу, указанному в документах, а тара и упаковка находятся в хорошем состоянии.

Ряд насыпных и навалочных грузов, например все хлебные грузы, принимается и сдается судном с проверкой массы груза. Взвешивание производят на автоматических весах. Сравнительно малоценные навалочные грузы(уголь, руда, соль и т. п.) принимают к перевалке обычно без взвешивания – с указанием массы по заявлению отправителя или с определением массы груза по осадке судна. В любом случае массу насыпных и навалочных грузов проверяют по осадке судна, для чего может привлекаться специальный сюрвейер и если она расходится с массой, заявленной отправителем или установленной путем взвешивания на автоматических весах, вносятся соответственные отметки в грузовые документы.

Груз, правильно сформированный и увязанный в пакеты, принимают по количеству пакетов, без пересчета мест внутри них. Но в случае нарушения увязки его принимают и сдают как обычный тарно-штучный груз – по числу мест.

Контейнеры принимают и сдают по количеству, номерам и наружному осмотру с проверкой целостности пломб. Контейнеры с повреждениями кузова, которые открывают доступ к содержимому, а также с нарушенными или неясными пломбами или без них на судно не принимают.

Таким образом определение массы груза производится для:

© генеральных грузов: 1. Счетом мест и умножением на стандартную или трафаретную массу. Трафаретная масса – определенная взвешиванием в пункте отправления, нанесения на тару (бирку) и указанная в документах. 2. Взвешиванием.

© навалочных грузов: 1. Счетом количества грейферов и умножением на среднюю массу груза в грейфере. 2. Взвешиванием 3. По разности водоизмещения до и после грузовых работ (см. лаб. раб. 3).

Удельный объем места (Uм) – объем который занимает 1 т груза в пространстве (Uм = Vм / Mм).

Удельный складочный объем (Uскл) – средний объем который занимает 1 т груза на складе (Uскл = Vшт / å Mм). Удельный погрузочный объем (U) – средний объем который занимает 1 т в грузовом помещении судна (U = W /

Для практических расчетов Uскл и U применяются соответственно коэффициенты укладки(Кукл) и трюмной укладки (Ктр). Коэффициент укладки можно определить по формуле Кукл = Vшт/ å Vм, для расчетов принимается равным 1,15. Коэффициент трюмной укладки рассчитывается для каждого рода груза и каждого грузового помещения по формуле Ктр =W/ å Vм. Для расчетов были определены средние значения Ктр в зависимости от линейных размеров груза и от расположения грузового помещения, на основании которых были построены графики зависимости(см. лаб. раб. 1). Таким образом, получим: Uскл = К скл × Uм; U = Ктр × Uм.

2. Генеральные грузы

2.1. Ящичные грузы

К ящичным относятся грузы в деревянных и фанерных ящиках и обрешетках, а также в картонных коробках, которые имеют правильную геометрическую форму параллелепипеда (рис. 5, рис. 6).

Ящики деревянные (или дощатые) при их большом разнообразии(по форме, размерам, назначению и пр.) можно разделить на 2 основных типа: плотные и решетчатые . Они наиболее надежно предохраняют содержимое от агрессивного влияния внешней среды. Изготавливаются их древесины различных пород(сосны, ели, липы, лиственницы, осины и др.), размеры и толщина досок зависит от особенностей перевозимых в них продуктов(товаров, изделий).

Плотные ящики часто изнутри выстилают пергаментом или иным подобным материалом, используются различные упаковочные материалы. Такие ящики обычно применяются при перевозке ценных (или бьющихся ) грузов, не требующих интенсивного воздухообмена.

Решетчатые ящики (полуящики) обычно используются при перевозке свежих плодоовощных грузов, требующих интенсивного воздухообмена и хорошей аэрации грузовых мест в процессе перевозки и хранения.

Невысокие ( мелкие ) ящики – ящики из дерева или картона, высотой 15 – 25 см, применяются для укладки в них фруктов или ягод, наиболее чувствительных к механическим повреждениям (сдавливанию и пр.).

Лотки – вид полуящиков небольшой высоты, имеющие специальные, выступающие за верхний габарит, треугольные бруски по углам, на которые они и устанавливаются при штабелировании. Используются при перевозке отдельных

ГОСТ 27802-93

Глинозем. Метод определения угла естественного откоса








Наши события —>

Разделы
  • Главная
  • Новости
  • Статьи
  • Объявления
  • Форум
  • Организации
  • Справочники
  • Документы
  • Мероприятия
  • Издания
  • Лица отрасли
О портале
Сервисы
  • СКЛАД, Тендеры, Маркет
  • Расчёт веса кабеля
  • Расшифровка марки кабеля
  • Расчёт схемы погрузки КПП
  • Фото,Видео
  • На карте
  • ГОСТы, СНиП
  • Вакансии, резюме
  • Рейтинг сайтов
  • Мобильные приложения
  • Версия для мобильных
  • RSS-ленты
  • English version
Читать еще:  Деревянные наличники для откосов
Медиахолдинг «РусКабель»
  • Портал «RusCable.Ru»
  • RusCable Insider Digest
  • ЭНЕРГОСМИ
  • ElektroPortal.Ru
  • Поисковая система «1EL.ru»
  • Премия RCWA
  • Желтая страница электротехники
  • Проект «ПУНП.РФ»
  • Проект «ОГНЕСТОЙКОСТЬ.РФ»
  • Хроники Cabex
  • Совещание 8 декабря
  • «RusCableCLUB» (гимн клуба)
  • Производственный
    календарь 2018 (pdf, 1.4 МБ)
  • Главная
  • Новости
  • Статьи
  • Объявления
  • Форум
  • Организации
  • Справочники
  • Документы
  • Мероприятия
  • Издания
  • Лица отрасли
  • О RusCable
  • Отзывы
  • Медиа-кит (pdf, 4,8 МБ)
  • Презентация (pdf, 6 МБ)
  • Корпоративный календарь (pdf, 15 МБ)
  • Реклама на портале
  • Спецпроект «Выживет сильнейший»
  • Карта сайта
  • Поиск по сайту
  • Сообщение администрации
    FacebookВКонтактеTwitterYouTubeInstagramTelegram+7 (999) 003-33-36
  • СКЛАД, Тендеры, Маркет
  • Расчёт веса кабеля
  • Расшифровка марки кабеля
  • Расчёт схемы погрузки КПП
  • Фото,Видео
  • На карте
  • ГОСТы, СНиП
  • Вакансии, резюме
  • Рейтинг сайтов
  • Мобильные приложения
  • Версия для мобильных
  • RSS-ленты
  • English version
  • Портал «RusCable.Ru»
  • RusCable Insider Digest
  • ЭНЕРГОСМИ
  • ElektroPortal.Ru
  • Поисковая система «1EL.ru»
  • Премия RCWA
  • Желтая страница электротехники
  • Проект «ПУНП.РФ»
  • Проект «ОГНЕСТОЙКОСТЬ.РФ»
  • Хроники Cabex
  • Совещание 8 декабря
  • «RusCableCLUB» (гимн клуба)
  • Производственный
    календарь 2018 (pdf, 1.4 МБ)

Онлайн-приёмная секции «Кабельная промышленность» Консультативного Совета при председателе Комитета по энергетике ГД РФ

Угол наклона зернового самотека

На зерновых элеваторах важную роль играет угол наклона самотечной трубы. В зависимости от угла наклона самотёка скорость перемещения зерна в трубе может меняться. Негативно влияет на работу элеватора в целом, как повышенная, так и замедленная скорость перемещения зёрен.

В тех случаях, когда зерно двигается быстро, оно подвергается механическим повреждениям и тем самым теряет полезные свойства. При низкой скорости передвижения зерновой культуры высока вероятность затора потока зерна в самотёке, а также будет наблюдаться существенное понижение производительности системы.

Исходя из этой ситуации выходит, что крайне невыгодно применение самотека с большим отвесом и критично излишней пологостью.

Особенности проектирования

Профессиональные специалисты с большим опытом работы из ЗЭО «Сокол» помогут оптимально выбрать угол наклона зернового самотёка в каждой конкретной ситуации. В хорошо спроектированной трубе самотёка зерно свободно транспортируется с заданной скоростью. Чтобы достичь таких результатов, необходимо довериться грамотным специалистам, которые смогут точно рассчитать сечение трубы самотёка, её наклон и предусмотреть эффективную систему торможения.

Правильно сконструированная труба самотёка должна выполнять следующие важные функции:

  1. Нивелировать возможность застрять зерновой культуре в трубе самотека;
  2. Уменьшать скорость движения зерен в тех местах, где она высокая. Для этого устанавливается специальные гасители скорости.

Существуют разные виды конструкций, в которых зерновая культура перемещается по ломаной линией, за счёт такой извилистости происходит снижение скорости движения зерен. Большинство гасителей скорости для самотеков основывается на принципе извилистой конструкции, благодаря которой обеспечивается оптимальная скорость движения зерновой культуры.

Выбор оптимального угла наклона

Сразу рассчитать и указать оптимальный угол самотека невозможно, его нужно рассчитывать с учётом каждого конкретного случая. В большинстве ситуаций естественный откос зерновой культуры влияет на оптимальный угол наклона самотека. В это же время, углы естественного откоса отличаются у зерновых культур, и зависят от их сорта и содержания влаги в них.

Кроме этого, при выборе оптимального угла самотека необходимо учитывать желаемую производительность системы и сечение трубы. Приведем примеры оптимальных углов самотёка для кукурузы с разным процентом влажности:

  • 36-36° оптимальный угол наклона для кукурузы, обладающей влажностью 14-25%;
  • 35-40° оптимальный угол для кукурузы, обладающей влажностью 26-32%.

Помимо этого, угол наклона самотёка должен иметь определенный запас, который примерно равен 5°. Исходя из вышеприведенной информации, можно быть уверенными, что для сухого зерна, предназначенного для силосного хранения во время транспортировки, оптимальным вариантом будет угол наклона больше 36°. В подобных случаях наиболее эффективен угол наклона в 50°.

В тех ситуациях, когда зерновая культура имеет повышенную влажность и засорена, и ей необходима обработка в зерносушилке и зерновом сепараторе, тогда оптимальный угол наклона будет составлять более 50°. Зерновые отходы обладают небольшим углом текучести. Поэтому если планируется использовать зерновой самотёк для перемещения зерновых отходов, в этом случае угол наклона должен быть свыше 50°. Для получения на выходе максимального количества качественного зернового продукта нужно ориентироваться на минимальный угол наклона самотека, что в свою очередь позволит обеспечить нужную скорость движения зерна и его сохранность.

Однако у каждого элеватора существуют свои рамки, за которые он не имеет возможности выйти. Из-за этого не всегда есть возможность спроектировать минимальный угол самотёка. Поэтому высокопрофессиональные специалисты с завода элеваторного оборудования «Сокол» тщательно и всесторонне подойдут к вашей проблеме, и на самом качественном уровне рассчитают оптимальный угол наклона зернового самотека для вашего конкретного случая.

Степень сыпучести порошков (ОФС.1.4.2.0016.15)

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Степень сыпучести порошков (ОФС.1.4.2.0016.15)

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Степень сыпучести порошков ОФС.1.4.2.0016.15

ОФС вводится впервые

Порошки (порошкообразные вещества), используемые в фармацевтической промышленности, – это лекарственные субстанции, вспомогательные вещества, а также их порошкообразные смеси и гранулы.

Широкое использование порошков в фармацевтической промышленности для создания самых различных лекарственных форм требует всесторонней оценки их технологических свойств, в основе которых лежит способность порошков течь (сыпаться) с определенной скоростью под воздействием силы тяжести.

Степень сыпучести – это комплексная технологическая характеристика, определяемая дисперсностью и формой частиц, остаточной влажностью и гранулометрическим составом порошкообразной системы.

Степень сыпучести порошков характеризуется следующими критериями:

  • – сыпучесть (скорость протекания порошка через отверстие);
  • – угол естественного откоса;
  • – насыпной объем.

На практике оценка степени сыпучести порошков определяется по одному, реже 2 критериям. Наиболее распространенными испытаниями являются определение сыпучести (скорости протекания порошка через отверстие) и определение насыпного объема.

В зависимости от конкретных технологических задач (научно-исследовательская работа при создании нового препарата, воспроизводство препарата по описанной технологии и пр.) в практике технологии лекарственных форм существует несколько вариантов каждого из этих базовых определений. Кроме того, выполнение того или иного испытания на различных производствах может проводиться с использованием различного аппаратурного оформления.

Читать еще:  Как можно отделать откосы межкомнатные

Приведенные методики определения степени сыпучести ставят своей целью унифицировать по возможности условия проведения испытаний, однако, учитывая научно-исследовательский характер технологических операций при создании, например, новых препаратов, имеют рекомендательный характер.

Определение сыпучести

Сыпучесть определяется как время, в течение которого определенная масса вещества проходит (протекает) через отверстие определенного размера.

Оборудование. В зависимости от сыпучести испытуемых материалов используют воронки различных конструкций:

  • без выходного ствола (типа «бункер», рис. 1), с различными размерами внутреннего угла и диаметрами выходных отверстий;
  • с выходным стволом (рис. 2).

Воронка поддерживается в вертикальном положении при помощи специального устройства.

Вся конструкция должна быть защищена от вибраций.

Методика. В сухую воронку с закрытым выходным отверстием помещают без уплотнения навеску испытуемого материала, взятую с точностью ±0,5 %. Количество испытуемого материала зависит от его насыпного объема и от используемого оборудования, но должно занимать не менее 80-90 % от объема воронки.

Открывают выходное отверстие воронки и определяют время, за которое через отверстие пройдет весь образец. Проводят не менее 3 определений.

Если при использовании оборудования, представленного на рис. 1, скорость высыпания 100 г порошка через насадку 1 менее 25 с, рекомендуется использовать воронку, представленную на рис. 2.

Если при использовании оборудования, представленного на рис. 1, навеска испытуемого материала неравномерно высыпается из воронки с насадкой 1, последовательно определяют сыпучесть, используя воронку с насадкой 2 или 3.

Рисунок 1. Воронка без выходного ствола (бункер) со сменной насадкой

Насадку изготавливают из нержавеющей кислотоупорной стали (V4A, CrNi). Размеры указаны в мм

Рисунок 2. Воронка с выходным стволом. Размеры указаны в мм

В табл. 1 представлены типовые размеры диаметров выходных отверстий сменных насадок.

Таблица 1. Типовые размеры диаметров выходных отверстий сменных насадок

НасадкаДиаметр (d) выходного отверстия, мм
110 0,01
215 0,01
325 0,01

Представление результатов. Сыпучесть выражают в секундах с точностью до 0,1 с, отнесенных к 100 г образца, с указанием типа использованного оборудования, номера насадки.

На результаты могут влиять условия хранения испытуемого материала.

Результаты могут быть представлены следующим образом:

а) как вычисленное среднее значение сыпучести при условии, что ни один из результатов не отклоняется от среднего значения более чем на 10 %;

б) в виде диапазона значений, если отдельные результаты отклоняются от среднего значения более чем на 10 %;

в) в виде графика зависимости массы испытуемого порошка от времени истечения.

Определение угла естественного откоса

Угол естественного откоса – это постоянный, трехмерный угол (относительно горизонтальной поверхности), сформированный конусообразной пирамидкой материала, полученной в определенных условиях эксперимента.

Методика. Определение угла откоса проводят по методике определения сыпучести с использованием того же оборудования в тех же условиях.

Истечение порошка из отверстия воронки производят на ровную горизонтальную поверхность. Диаметр основания (базы) конуса порошка может быть фиксированным или может меняться в процессе образования конуса.

Измерение значения угла естественного откоса проводят не менее чем в 3 повторностях при помощи угломера в 3 плоскостях и выражают в угловых градусах.

При проведении испытания следует учитывать, что:

  • условия эксперимента должны обеспечивать формирование симметричного конуса порошка;
  • вершина формирующегося конуса может деформироваться под воздействием падающих частиц порошка.

Эти внешние воздействия должны быть устранены любым приемлемым способом.

Кроме того, материал основы (базы), на которой формируется конус, может влиять на величину угла откоса.

В табл. 2 представлено примерное соотношение степени сыпучести порошков и угла естественного откоса, измеренного в условиях фиксированного диаметра основания конуса.

Таблица 2. Степень сыпучести порошков и соответствующий угол естественного откоса

Степень сыпучестиУгол естественного откоса, градус
Очень хорошая25 – 30
Хорошая31 – 35
Удовлетворительная36 – 45
Неудовлетворительная (требуется дополнительное перемешивание или вибрация)46 – 55
Плохая56–65
Очень плохаяболее 66

Представление результатов. Угол естественного откоса выражают в градусах, как вычисленное среднее значение, с указанием типа использованного оборудования, номера насадки, условий эксперимента (диаметр основания конуса, если он фиксированный, материала основы (базы), на которой формируется конус).

Определение насыпного объема

Испытание позволяет определить при заданных условиях насыпные объемы до и после уплотнения, способность к уплотнению, а также насыпную плотность отдельных материалов (например, порошков, гранул).

Оборудование. Прибор (рис. 3) состоит из следующих частей:

  • встряхивающее устройство, обеспечивающее 250 15 соскоков цилиндра в 1 мин с высоты 3 0,2 мм;
  • подставка для градуированного цилиндра, снабженная держателем, имеющая массу 450 5 г;
  • градуированный цилиндр вместимостью 250 мл (цена деления – 2 мл; масса цилиндра 220 40 г).

Допускается использование других приборов подобного принципа действия.

Методика. В сухой цилиндр помещают без уплотнения навеску испытуемого материала, имеющего насыпной объем в диапазоне от 50 до 250 мл. Аккуратно закрепляют цилиндр на подставке и фиксируют насыпной объем до уплотнения (V) с точностью до ближайшего деления. Производят 10, 500 и 1250 соскоков цилиндра и фиксируют объемы V10, V500, V1250 с точностью до ближайшего деления. Если разность между V500 и V1250 превышает 2 мл, производят еще 1250 соскоков цилиндра.

Рисунок 3. Прибор для определения насыпного объема

Представление результатов. По полученным результатам можно вычислить следующие параметры:

1. Насыпной объем:

2. Способность порошка к уплотнению:

3. Насыпная плотность:

Полученные результаты можно использовать для вычисления коэффициента прессуемости по формуле:

V – начальный объем порошка;

V1 – объем порошка после уплотнения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector