Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса бурого угля

neprohogi

БОЛЬШОЙ КОСМИЧЕСКИЙ ОБМАН США

Мухин Ю.И. о странностях лунных кадров, в которых были замечены прожектора: «Пара слов о том, что люди, уверенные в том, что американцы были на Луне, считают попавшие в многочисленные фотографии осветительные прожектора съёмочного павильона бликами на объективе. Прожектора попали и в кадры этого фильма, и они хорошо отличимы от бликов. (При повороте камеры блики меняют форму и следуют за камерой, а прожектора остаются неподвижными.)»
К сожалению, нет указанных кадров в публикации, чтобы оценить правильность этого утверждения. Но кадры, где отразились необычные объекты, очень похожие на прожектора, были.


http://www.aulis.com/jackimages/12dinespotlight.jpg

Мухин Ю.И. о следах и угле естественного откоса «лунного грунта»

«По поводу следов подошв астронавтов «на Луне» интересны такие данные из этой книги. Исследователи пишут, что лунный грунт «легко формуется и сминается в отдельные рыхлые комки. На его поверхности чётко отпечатываются следы внешних воздействий — прикосновений инструмента. Грунт легко держит вертикальную стенку[10]…» Из этого формально следует, что протекторы обуви астронавтов, обжимая грунт сверху и с боков, могли оставить чёткий след. (Хотя мне трудно понять, как исследователи могли оценить формуемость грунта, имея в своём распоряжении образец объёмом менее стопки). Но исследователи и пишут, что грунт «…при свободном насыпании имеет угол естественного откоса в 45°» (и дают фото). Т. е. грунт без прессования не «держит стенку». Если мы на пляже насыплем мокрый песок в стакан, а затем перевернём стакан и снимем его, то песок сохранит внутреннюю форму стакана, он будет держать стенку и без прессования, при свободном насыпании. А если мы насыплем в стакан сухой песок и перевернём его, то песок растечётся, образуя конус с углом естественного откоса, т. е. он стенку не держит.
Отсюда следует, что след протектора подошв американских астронавтов должен быть чётким только в центре, а по краям обуви, где грунт не прессуется, он должен осыпаться с углом 45°. Такой след — с осыпавшимися краями — и оставлял на Луне наш луноход. На американских фото грунт держит стенку на отпечатках следов и в центре их, и с краёв. Т. е. это не лунный грунт, это мокрый песок.»
Пример с мокрым песком в детском стаканчике правильный
Можно конечно поспорить с таким утверждением, где напрямую увязывается угол естественного откоса грунта и содержание воды в грунте. Это некорректный метод исследования и неправильный вывод. Достаточно посмотреть на следующую таблицу:

У сырого песка и мокрого песка близкие углы естественного откоса. И они не равны 80-90*. При рассмотрении процесса образования четкого следа на грунте необходимо рассматривать другие характеристики грунта. Это во первых, отношение высоты откоса к заложению:

Оптимальное соотношение 1:0, чтобы получить четкий след с краями следа 90*. При этом надо учитывать, что чрезмерное содержание воды в песке не позволит на таком грунте оставить чёткий след , где край следа сохраняет прямоугольную форму. Стенки следа просто поплывут. И мы приходим к следующей характеристики грунта.
И это, во-вторых, сцепление — сопротивление грунта сдвигу. Сила сцепления для песчаных грунтов составляет 3. 50 кПа, для глинистых — 5. 200 кПа. Чем больше величина сцепления тем более четкий грунт, но опять же большая величина сцепления не позволит оставить след на грунте вообще.
В-третьих, это водоудерживающая способность или сопротивляемость грунта прониканию воды, она очень высока у глинистых грунтов и низка у песчаных. По этой причине последние называются дренирующими, т.е. хорошо пропускающими воду, а первые — недренирующими.
При нажатии обуви на влажный грунт вода растекается вниз и вбок от поверхности следа и соответственно меняется свойство грунта по краям следа. И здесь тоже не все так гладко с появлением на грунте четкого следа. Если по краям вытесненная вода достигнет определенного уровня, края следа потекут.
И наконец, версия о том, что четкий след на грунте появляются благодаря жидкой воде в этом грунте рушится при рассмотрения оставления четкого следа обуви на снегу или на рыхлом подмороженном грунте, где жидкой воды нет:

Угол естественного откоса снега колеблется между 30* и 40*, как и сухого грунта. Так что увы, Мухин Ю.И. неправильно оценил эту ситуацию.
Американский след был , скорее всего оставлен на грунте, где не было жидкой воды, а была вода замороженная, и сам рыхлый грунт был подморожен. Следы на таком грунте появляются четкие и держаться долго, пока вода в грунте не растает и не испариться из грунта, если это песок. Если это глина, например, то и тогда след сохраниться, хотя в грунте будет минимум влаги.

И угол естественного откоса сухой глины здесь никак не проявляется. Края следа на глинистой почве после ее высыхания не осыпаются. Версия Мухина Ю.И. о прямой связи между углом естественного откоса , наличием жидкой воды в грунте и появлением четкого отпечатка на таком грунте, не проходит.
Адвокаты Лунного Обмана США сочиняют сказки про «липкий» грунт в условиях вакуума и давят на свойства грунта, который указан выше: сцепляемость. Так вот здесь большая проблема для такой версии. Частицы, фракции грунта в этом случае должны были прилипнуть к резиновой подошве намертво при давлении подошвы обуви на такой грунт и в этом случае оставление следа на почве с четким контуром и стенками под углом 90* просто невозможно.

Бурый или каменный: какая разница, чем топить ТЭЦ?

Уголь — органическое вещество, которое образовалось под воздействием давления и температур из залежей торфа. Сначала торфяные останки трансформировались в бурый уголь, потом — в каменный, затем — в антрацит.

Схема трансформации торфа в уголь различных видов
Скачать

Если схему трансформации угля перевернуть, можно представить, как расположены угольные слои в разрезе. Но если это всего лишь разновидности одной горной породы, то есть ли разница для ТЭЦ, что сжигать? Конечно, есть.

Для любого углеродного топлива, в том числе угля, важны такие характеристики, как доля углерода в его составе и количество тепла, которое выделится, когда он сгорит.

Несмотря на то что лучше всего горит каменный уголь, бурый уголь используют на ТЭЦ из-за пониженной зольности. Чем меньше золы образуется при горении угля, тем чище выбросы ТЭЦ в атмосферу
Скачать

Второй критерий, который определяет, какой уголь сжигать на ТЭЦ, — расстояние от места добычи, шахты или разреза, до ТЭЦ и способ его транспортировки. На все новосибирские ТЭЦ уголь попадает с добывающих предприятий напрямую в вагонах по железнодорожным путям.

Третий критерий — содержание влаги и характеристики угольной пыли. Чем больше влаги, тем больше усилий нужно, чтобы перемолоть уголь в пыль. Особенно в зимний период, потому что такой уголь сильнее смерзается в мороз, чем сухой, и ТЭЦ тратит больше топлива для испарения влаги из него. Характеристики угольной пыли необходимо знать, чтобы понять, не повредит ли она очистительное оборудование в ходе технологического процесса. В целом особенности угля (его марка и пр.) обязательно учитываются при выборе очистительного оборудования для ТЭЦ. И новосибирские тепловые электростанции в данном случае не исключение.

Читать еще:  Как задать угол для откоса

Бурый уголь — самый твердый и самый влажный вид угля. Он содержит 30–40% влаги. Он быстро окисляется и растрескивается на открытом воздухе, при этом теряет свою теплотворную способность. Чтобы предотвратить этот процесс, на ТЭЦ тщательно укатывают угольные кучи на складах, перекрывая доступ воздуха к внутренним слоям угля.

Из-за повышенного содержания кальция в буром угле зола и шлаки, которые образуются в процессе сжигания, формируют прочные отложения. А если продукты распада бурого угля контактируют с водой, то отложения образуются в два раза быстрее. Потому бурый уголь используют на ТЭЦ, где изначально было установлено оборудование для такого угля. В Новосибирске это — ТЭЦ-3 и ТЭЦ-5. На данных станциях дымовые газы от бурого угля очищают без применения воды — с помощью электрофильтров, а поверхности нагрева котлов — при помощи паровых аппаратов обдувки.

Карта месторождений бурого угля
Скачать

Каменный уголь более мягкий, в нем всего 5–6% влаги, еще в нем меньше кальция, а значит, почти нет отложений внутри котла. При контакте с водой ни шлаки, ни зола, ни взвеси дымовых газов не затвердевают, поэтому для очистки на станциях возможно использовать, например, очистительное оборудование на основе воды, эмульгаторы и скрубберы, а также выводы золы с помощью водных потоков. Такое оборудование установлено на новосибирских ТЭЦ-2 и ТЭЦ-4.

Карта крупнейших месторождений каменного угля
Скачать

Антрацит — заключительный этап формирования угольной породы, поэтому в нем максимально сконцентрированы различные вещества. Несмотря на самую высокую горючесть, он загорается только при температурах +600. +700 °С и имеет большую вязкость. К тому же стоимость антрацита крайне высока: он в сотню раз дороже, чем каменный уголь. Поэтому в качестве топлива для ТЭЦ он практически не используется.

Мы узнали, как формируется уголь, сравнили все стадии этого процесса. Но так и не ответили на вопрос: какой уголь лучше для работы ТЭЦ и экологии города? По нормам федеральных надзорных органов в области энергетики, согласно ГОСТам, на угольных ТЭЦ Сибири разрешено сжигать только определенные сорта каменного и бурого угля. Каждый из которых, кстати, имеет свои плюсы и минусы, они компенсируют друг друга. Поэтому не так важно, какой из разрешенных по ГОСТам вид угля сжигает ТЭЦ. Более значимый фактор, насколько успешно ТЭЦ очищает дымовые газы и обращается с продуктами сжигания угля. Например, электрофильтры, эмульгаторы и скрубберы новосибирских ТЭЦ имеют высокую степень очистки дымовых газов — от 96,0 до 99,2%.

Угол естественного откоса бурого угля

Для межцеховой, внутрицеховой н межоперацнонной доставки насыпных и однородных штучных грузов на заводах стройматериа­лов широко применяют машины и установки непрерывного транс­порта (конвейеры) (рис. 78).

Совмещая во времени груженый (рабочий) и порожний (холо­стой) хода н работая без остановок, машины непрерывного транс­порта обеспечивают заданную производительность независимо от расстояния транспортирования н поэтому наиболее удовлетворяют современным требованиям поточной системы производства.

Транспортирующие машины перемещают грузы навалом иа не­сущих поверхностях — лентах, пластинах или в желобах.

Выбор типа транспортирующих машин н их основных пара­метров (скорость движения, угол наклона и др.) в значительной степени зависит от физико-механических свойств насыпных грузов.

Характерными свойствами насыпных грузов как объектов транспортирования, которые надо учитывать при выборе транс­портирующих машин, являются: крупность, влажность, плотность (объемная масса) в кг/м3, подвижность и связность частиц, смер — заемость, угол естественного откоса, коэффициент треиия о твер­дые несущие поверхности, абразивность.

Плотность насыпного груза (насыпная плотность) зависит также от крупности его частиц, и, как правило, уменьшается по мере измельчения. Классификация насыпных грузов по весу приведена в табл. 22.

Категория насыпного груза

Насыпная плотность в кг/м3

Примерные I-urcufiHwe грузы

Менее 600 600—1100 1100—2000 Более 2000

Древесные опилки, торф Каменный уголь, шлак Песок, гравий, щебень Руда, гранит

Насыпные грузы имеют ограниченную подвижность и могут воспринимать сдвигающие усилия; благодаря наличию сил тре­ния и сцепления между частицами эти силы тем больше, чем выше внутреннее давление.

Углом естественного откоса называется наибольший угол, который может образовывать свободная поверхность сыпучего

Рис. 78 Схемы конвейеров:

А — ленточный; о — пластинчатый; в — скребковый; г — ковшовый; д — полочный;

Е — люлечный; ж — элеватор

Тела с горизонтальной плоскостью. Обычно угол естественного откоса в покое определяют с помощью полого цилиндра (рис. 79). Материал насыпают в полый цилиндр, а затем последний осто­рожно поднимают. При этом высыпавшийся материал распола­гается в виде конуса, образующие которого наклонены к гори­зонтальной плоскости под углом естественного откоса.

На несущих поверхностях транспортирующих машин материал подвергается толчкам и встряхиванию, вследствие чего угол есте­ственного откоса прн движении машин меньше, чем в покое.

Для определения угла естественного откоса при движении опорной плоскости нужно сообщить вертикальные колебания. 10* 147

Если отсутствуют данные об угле естественного откоса прн дви­жении, то его принимают в зависимости от угла откоса при покое:

Коэффициент трения материала о различные поверхности опре­деляют с помощью наклонной плоскости. Для этого материал кладут на наклонную плоскость и, постепенно увеличивая наклон, фиксируют угол ф, при котором материал начинает двигаться.

Рис. 79. Схема опре­деления угла естест­венного откоса сыпу­чего груза при по-

Рис. 80. Формы желобов. Попереч­ные сечения желобов и устройства для предохранения дна желоба от износа

Мощи полого цилиндра

Как известно из технической механики, да это легко проверить, разложив силу тяжести на наклонной плоскости,

Для хорошо сыпучих грузов угол естественного откоса равен углу внутреннего трения. Для связных насыпных грузов угол естественного откоса больше, чем угол внутреннего трения, и за­висит от способа формирования откоса.

Насыпные веса и коэффициенты трения некоторых материалов приведены в табл. 23.

Для направления потока сыпучего материала в технологиче­ские аппараты и на транспортные машины служат наклонные желоба и трубы, в которых движение материала происходит под действием силы тяжести. Поперечные сечения желобов должны обеспечивать заданную производительность и соответствовать кусковатости материала во избежание затора. Угол наклона должен быть больше угла трения. Некоторые формы желобов приведены на рис. 80, а, б и в.

Для увеличения срока службы желобов, особенно при пере­мещении тяжелых и абразивных материалов предусматривают мероприятия, повышающие срок службы желобов (наплавка твер­дыми сплавами, покрытие футеровки износоустойчивыми мате — 148

Читать еще:  Экскаватор для планировки откосов

Характеристика транспортируемых материалов

Название материала

УГол естест­венного откоса ф н град

Коэффициент тре — ння F по

В дни — жени и

Алебастр обожженный кусковой

Гинс дробленый кусковой. . .

Глина сухая в кусках.

Гашеная в порошке. , , .

Крупный различной влажно­

Торф сухой кусковой.

Бурый воздушный сухой

Каменный мелкий и орешко-

Риалами), а также устраивают подсыпку слоя материала, как это показано на рис. 80, гид.

Транспортирующие машины, предназначенные для перемеще­ния грузов по горизонтали или под малым углом к горизонту, часто называют транспортерами; по вертикали или под большими углами наклона к горизонту — элеваторами; перемещающие одно­временно по различным направлениям в одной плоскости нли в пространстве — конвейерами. В последнее время употребляется термин «конвейер» и по новым ГОСТам ленточные, пластинчатые, скребковые, винтовые и другие транспортеры называются кон­вейерами.

Для многих устройств непрерывного транспорта характерно наличие гибкого тягового органа (лента, цепь, канат), совершаю­щего непрерывное поступательное движение. Тяговый орган при­водит в движение рабочие органы, непосредственно перемещающие груз (скребки, пластины, лента, ковши). В некоторых конвейерах, например ленточных, функции тягового и рабочего органа совме­щены в самой ленте.

Некоторые транспортные устройства непрерывного действия не имеют тягового органа. К ним относятся винтовые конвейеры, устройства, использующие для движения груза силы инерции (вибрационные конвейеры) илн силу тяжести — гравитационные устройства.

При изучении устройства и методов расчета транспортных машнн главным классификационным признаком является общность конструкции и однородность метода расчета. Вследствие этого транспортные машины разбиты на группы, каждая из которых рассматривается в отдельной главе: 1) конвейеры (ленточные, пластинчатые комбинированные); 2) элеваторы; 3) пневматиче­ские и гидравлические транспортные установки.

ТАЙНЫ ПРИРОДЫ и ЗЕМЛИ. Секреты образование бурого и каменного угля

Оригинал взят у sibved в Образование бурого и каменного угля
Меня все не оставляет вопрос: почему в буроугольных разрезах столько слоев с этим полезным ископаемым?

Бородинский угольный разрез. Красноярский край

Официально – это слои накопления биомассы от лесов и растений, закоксованные под другими слоями. Или это были мощные древние торфяники (нижний самый толстый слой).

Эта картина слоев угля встречается повсеместно:

Назаровский угольный разрез. Два тонких слоя близко у поверхности


Основной слой с бурым углем выглядит не как беспорядочная масса с хаотично уложенными окаменевшими стволами древних деревьев. Пласт имеет четкие страты – множество слоев. Т.е официальная версия с древними деревьями не подходит. И не подходит еще по причине большого содержания серы в пластах бурого угля.

Таблица содержания некоторых химических элементов в углях, торфе, древесине и нефти.

Чтобы не вдумываться в смысл таблицы, напишу выводы из нее.
1. Углерод. В древесине его меньше всего из перечисленных топливных источников. И непонятно (если принять во внимание традиционную версию образования углей), почему при накоплении органики (древесина или торф) в слоях количество углерода увеличивается. Противоречие, которое никто не объясняет.
2. Азот и кислород. Азотистые соединения – это одни из строительных элементов древесины, растительности. И почему количество азота уменьшилось после превращении древесины или торфа в бурый уголь – опять непонятно. Опять противоречие.
3. Сера. В древесине отсутствует какое-либо достаточное для накопления этого хим.элемента количество. Даже в торфе серы ничтожно мало по сравнению со слоями бурого и каменного угля. Откуда сера попадает в слои? Единственное предположение – сера в слоях была изначально. Смешалась с органикой? Но как-то странно концентрация серы в углях совпадает с содержанием серы в нефти.

Обычно сера бывает пиритной, сульфатной и органической. Как правило, превалирует пиритная сера. Сера, содержащаяся в углях, находится обычно в виде сульфатов магния, кальция и железа, железного колчедана (пиритная сера) и в виде органических серосодержащих соединений. Раздельно определяют, как правило, только сульфатную и сульфидную серу; органическая определяется как разность между количеством общей серы в угле и суммой сульфатной и сульфидной серы. Источник

Серный колчедан – почти постоянный спутник каменного угля и притом иногда в таком количестве, что делает его негодным к употреблению (напр. уголь Московского бассейна).

По этим данным выходит, что накопление органики (древесина или торф) не имеет отношения к углям. Образование бурых углей – абиогенный процесс. Но какой? Почему бурые угли расположены относительно неглубоко, а каменноугольные могут находиться на глубинах до двух километров?

Следующий вопрос: где все окаменелости растительного и животного мира в буроугольных пластах. Они должны быть массовые! Стволы, растения, скелеты и кости умерших животных – где они?

Находят отпечатки листьев лишь в вскрышных породах:

Окаменевший папоротник. Такие окаменевшие растения попадаются при добыче угля. Этот экземпляр добыт во время работы на шахте «Родинская» в Донбассе. Но к этим якобы окаменелостям мы вернемся ниже.

Это относится к пустой породе каменноугольных шахт. По бурому углю я ничего не нашел.


Области углеобразования. Большая часть угля находится в северном полушарии, отсутствует на экваторе и тропиках. Но ведь там наиболее приемлемый климат для накопления органики в древности. Нет и областей (в широтном виде) накопления на старых экваторах. Такое распределение явно связано с иной причиной.

Еще один вопрос. Почему это полезное горючее ископаемое не использовали в древности? Нет массовых описаний добычи и использования бурых углей. Первые упоминания про уголь относятся лишь к времени Петра I. Достать (докапаться до пласта) совсем не сложно. Это делают кустарным образом местные жители на Украине:

Есть и более масштабные добычи каменного угля открытым способом:


Уголь под 8-10 метрами глины. Для образования каменного угля геологи говорят нужно большое давление и температура. Здесь явно этого не было


Уголь мягкий, крошится.

При выкапывании колодцев обязательно должны были натыкаться на пласты и выяснить что они горят. Но история нам говорит о начале массовой добычи углей лишь в 19в.

А может быть, не было этих пластов до 19в.? Как не было в середине 19в. деревьев! Смотрите пустынные пейзажи Крыма и фотографии столыпинских переселенцев, которые забирались в глухие уголки Сибири обозами. А сейчас там непроходимая тайга. Это я про версию потопа 19в. Механизм его не ясен (если он все же был). Но вернемся к бурым углям.

Как думаете, что это за порода? Бурый уголь? Похоже, но не угадали. Это битумные пески.

Крупномасштабная добыча нефти из битумных песков в Канаде. До падения цен на нефть было рентабельным, даже прибыльным бизнесом. В среднем, из четырех тонн битумапроизводят только один баррель нефти.

Если не знать, то и не подумаешь, что здесь добывают нефть. Похоже на буроугольный разрез.

Еще пример с Украины:


В селе Старунья (Ивано-Франковская обл.) нефть выходит на поверхность сама, создавая маленькие вулканы. Некоторые нефтяные вулканы горят!

Читать еще:  Откосы наружные под пенопласт


Потом это все окаменеет и будет угольный пласт.

Так я к чему это веду? К тому, что нефть во время катаклизма, разлома земли вышла, разлилась. Но не окаменела в песках. А бурый уголь, возможно — тоже самое, но в меловых или иных отложениях. Там фракция до нефти была меньше чем песок. Каменное состояние углей говорит, что там замешано на меловых слоях. Возможно, протекли какие-то реакции и пласты превратились в камень.

Даже википедия пишет:
Ископаемый уголь — полезное ископаемое, вид топлива, образовавшийся как из частей древних растений, и в значительной степени из битумных масс, излившихся на поверхность планеты, подвергшихся метаморфизму вследствие опускания на большие глубины под землю под высокими температурами и без доступа кислорода. Источник
Но версия абиогенного происхождения бурых углей из разливов нефти нигде более не развивается.

Некоторые пишут, что эта версия не объясняет множество слоев бурого угля. Если учесть, что на поверхность выходили не только массы нефти, но и водно-грязевых источников, то чередование вполне возможно. Нефть и битум легче воды – они плавали на поверхности и осаждались и адсорбировались на породе в виде тонких слоев. Вот пример в сейсмоактивной зоне, в Японии:

Из разломов выходит вода. Она, конечно, не глубинная, но что мешает при более масштабных процессах выйти водам артезианских источников или подземных океанов и при выходе выкинуть на поверхность массы пород, перемеленных в глину, песок, известь, соль и т.д. Отложить страты за короткий период, а не миллионы лет. Я все больше склоняюсь, что в некоторых местах в определенные времена потоп мог быть вызван не прохождением волны с океана, а выходом водно-грязевых масс из недр Земли.

Отдельный вопрос — образование каменного угля

Комментарий в одной из статей от jonny3747 :
Уголь на Донбассе, это скорей всего смещение плит одна под другую, вместе со всеми лесами, папоротниками и т.д. Сам работал на глубинах больше 1 км. Пласты залегают под углом, как вроде одна плита под другую заползала. Между пластом угля и породы очень уж часто встречаются отпечатки растений, довольно много попадалось на глаза. И что интересно между твердой породой и углем есть тонкий прослоек еще как бы не породы но еще и не угля, крошится в руках, в отличии от породы имеет темный цвет и вот именно в нем часто отпечатки были.

Это наблюдение очень четко подходит под процесс роста пирографита в этих слоях. Скорее всего, такие автор и видел:

Вспоминаем окаменелости папоротника на фотографиях выше

Вот выдержки из монография «Неизвестный водород» и работы «История Земли без Каменноугольного периода»:

Опираясь на собственные исследования и целый ряд работ других ученых, авторы констатируют:
«Учитывая признанную роль глубинных газов, … генетическую связь естественных углеродистых веществ с ювенильным водородно-метановым флюидом можно описать следующим образом.
1. Из газофазной системы С-О-Н (метан, водород, диоксид углерода) могут быть синтезированы … углеродистые вещества – как в искусственных условиях, так и в природе…
5. Пиролиз метана, разбавленного диоксидом углерода, в искусственных условиях приводит к синтезу жидких … углеводородов, а в природе – к образованию всего генетического ряда битумонозных веществ».

СН4 → Сграфит + 2Н2

В процессе разложения метана в глубине совершенно естественным образом происходит образование сложных углеводородов! Происходит потому, что оказывается энергетически выгодным! И не только газообразных или жидких углеводородов, но и твердых!
Метан и сейчас постоянно «сочится» в местах добычи каменного угля. Он может быть остаточным. А может быть и свидетельством продолжения процесса поступления паров углеводородов из недр.

Ну, вот теперь настало время разобраться с «главным козырем» версии органического происхождения бурого и каменного угля – наличием в них «углефицированных растительных остатков».
Такие «углефицированные растительные остатки» находят в залежах угля в огромных количествах. Палеоботаники «уверенно определяют вид растений» в этих «остатках».
Именно на основании обилия этих «остатков» сделан вывод о чуть ли не тропических условиях в громадных регионах нашей планеты и вывод о буйном расцвете растительного мира в Каменноугольный период.
Но! При получении пиролитического графита путем пиролиза метана, разбавленного водородом, было установлено, что в стороне от газового потока в застойных зонах образуются дендритные формы, весьма похожие на «растительные остатки».

Образцы пиролитического графита с «растительными узорами» (из монографии «Неизвестный водород»)

Самый простой вывод, который вытекает из приведенных выше фотографий «углефицированных растительных форм», на самом деле представляющих из себя лишь формы пиролитического графита, будет таким: палеоботаникам теперь надо крепко думать.

А ученый мир продолжает писать диссертации о происхождении углей на основе биологического накопления слоев

1. Гидридные соединения в недрах нашей планеты, распадаются при нагревании (см. статью автора «Ждет ли Землю судьба Фаэтона. »), выделяя при этом водород, который в полном соответствии с законом Архимеда устремляется вверх – к поверхности Земли.
2. На своем пути водород, благодаря высокой химической активности, взаимодействует с веществом недр, образуя различные соединения. В том числе и такие газообразные вещества как метан СН4, сероводород Н2S, аммиак NH3, водяной пар Н2О и тому подобные.
3. В условиях высоких температур и в присутствии других газов, входящих в состав флюидов недр, происходит постадийное разложение метана, что в полном соответствии с законами физической химии приводит к образованию газообразных углеводородов – в том числе и сложных.
4. Поднимаясь как по имеющимся трещинам и разломам земной коры, так и образуя под давлением новые, эти углеводороды заполняют все доступные им полости в геологических породах. А из-за контакта с этими более холодными породами, газообразные углеводороды переходят в другое фазовое состояние и (в зависимости от состава и окружающих условий) образуют залежи жидких и твердых ископаемых – нефти, бурого и каменного угля, антрацита, графита и даже алмазов.
5. В процессе образования твердых отложений в соответствии с далеко еще неизученными законами самоорганизации материи при соответствующих условиях происходит образование упорядоченных форм – в том числе напоминающих и формы живого мира.

И еще весьма любопытная деталь: до «Каменноугольного периода» – в конце Девона – климат довольно прохладный и засушливый, и после – в начале Перми – климат так же прохладный и засушливый. До «Каменноугольного периода» мы имеем «красный континент», и после имеем тот же «красный континент»…
Возникает следующий закономерный вопрос: а был ли теплый «Каменноугольный период» вообще.

Не миллионолетний возраст каменноугольных и буроугольных пластов объясняет еще ряд странных артефактов, найденных в углях:


Железная кружка, найденная в угле возрастом в 300 млн. лет.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector