Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет устойчивости откосов аналитическими методами

Об устойчивости откосов и склонов, включая армогрунтовые

В последние годы инженерам все чаще приходится решать задачи, связанные со строительством сооружений на природных склонах, или же возводить искусственные откосы. В связи с этим оползневая опасность и предотвращение катастроф, связанных с ней, становятся все более актуальными проблемами.

В настоящей статье приводятся некоторые актуальные примеры аварий, вызванных некачественными инженерными изысканиями и проектированием на оползневых склонах и предлагаются пути повышения качества расчетов.

Значительная часть населения Земли живет в условиях оползневой опасности. Причин обрушения естественных склонов и искусственных откосов существует очень много. Это и деградация свойств грунтов при увлажнении, и сейсмика, и изменение конфигурации (подмыв, подрезка), и пригрузка, и техногенные воздействия и т.д. Устойчивость возводимых откосов можно оценить достаточно точно, поскольку в них свойства грунтов измеряются и контролируются. Грунтовые массивы можно укреплять нагелями, геосинтетикой, искусственными волокнами (фиброй), подпирать сваями и/или стенами. Для таких откосов нужны свои методы расчета.

Искусственные земляные массивы также подвержены авариям. Приведем для примера две известных крупных аварии, произошедших совсем недавно в США.

Разрушение ограждающей дамбы шламохранилища горной разработки меди и золота (компания British Imperial) в Британской Колумбии на западе Канады (Mount Pouley, Canada, B.C.) в августе 2015 г. привело к утечке ?10 миллионов м3 шлама в окружающие леса, озера и реки. По заключению независимой комиссии экспертов, авария произошла из-за недочетов изысканий (был пропущен прослой слабого грунта в основании дамбы), и проектирования (завышена крутизна откоса).

Вторая авария – это разрушение самой высокой в США армогрунтовой насыпи высотой 73 м, возведенной для удлинения взлетно-посадочной полосы в аэропорту Йигер, вблизи г. Чарльстоун, штат Западная Вирджиния США (Yеager Airport, Charlestone, West Virginia, USA). Причины этой аварии активно обсуждались в Интернете на англоязычном сайте Geotechnical Engineering. Выдвигались различные версии, но единодушия не было. На наш взгляд, армирующие полотнища были слабо скреплены друг с другом на внешней стороне откоса, т.е. фактически «драпировали», а не удерживали грунт от выдавливания наружу. Такие дефекты имеют тенденцию прогрессировать. Это привело к длительному (?2 года) разрушению за счет последовательного выдавливания грунта из насыпи наружу в местах нарушений слабых соединений армирующих элементов. Это началось, возможно, в одной или нескольких точках, а затем процесс разрушения начал прогрессировать.

Эти и множество других примеров показывают актуальность разработки и уточнения методов проектирования и расчета устойчивости искусственных откосов, включая армированные.

Методы расчёта устойчивости

Исследования устойчивости откосов/склонов продолжается уже 100 лет, за это время было разработано много методов расчета, которые можно разделить на три следующие группы:

Большинство методов расчета устойчивости откосов/склонов дают решения в условиях плоской задачи при допущении о форме линии скольжения (разрушения): прямая, окружность, логарифмическая спираль, ломаная линия, искомая линия. В некоторых методах учитывается образование закола в верхней части откоса. Решение получается минимизацией коэффициента устойчивости K=R/F, по геометрическим параметрам виртуальных линий скольжения, где F – сумма сдвигающих, а R – сумма удерживающих усилий вдоль линии скольжения. В отличие от этих методов в методе Моргенштерна-Прайса [1] форма линии скольжения определяется конечными приращениями.

К.Терцаги в своей книге [2] предложил учитывать закол (вертикальную трещину) в верхней части откоса, который предшествует разрушению, инициируя затем потерю общей устойчивости.

Решения В.В. Соколовского [3] разработаны для оценки устойчивости однородных откосов в условиях предельного состояния, которое достигается сразу во всех точках области разрушения (статическое разрушение). Очевидно, что устойчивость при прогрессирующем (кинематическом) разрушении меньше, чем при статическом.

Ко второй группе относятся методы построения «равнопрочного» или «равноустойчивого» профиля откоса в условиях плоской задачи. Такой профиль возникает после обрушения ранее существовавшего массива грунта. Предполагается, что, сравнивая форму такого откоса с формой существующих откосов, можно оценить, насколько устойчивы последние.

Впервые такие откосы рассматривал В.В.Соколовский [3] (не называя их «равнопрочными» или «равноустойчивыми»), который показал, что после обрушения существующего откоса образуется новый откос, который имеет выполаживающуюся нижнюю часть и вертикальную и даже нависающую верхнюю часть — «закол», ведь связный грунт может работать на растяжение. Такие откосы мы часто видим по берегам рек и водоемов.

Н.Н.Маслов предложил и термин, и метод определения «равнопрочного» контура откоса [4], напоминающего по форме профили берега рек и водоемов, которые периодически оползают за счет подмыва водой.

Контур такого «равнопрочного» откоса по Н.Н.Маслову возникает за счет разрушения однородного полубесконечного тела с горизонтальной поверхностью в условиях плоской задачи. Но такое разрушение невозможно без значительного внешнего воздействия, что физически необъяснимо. Кроме того, в разрешающем уравнении для определения «равнопрочной» линии разрушения такого откоса автором была допущена ошибка: неучет наклона линии скольжения при учете вклада сцепления грунта. Тем не менее, «равнопрочные» откосы Н.Н.Маслова по форме очень похожи на откосы, образовавшиеся после оползней.

В [5] дана форма аналогичного, но уже «равноустойчивого» откоса, и такая же, как у откосов Соколовского. Но в формуле 6.53 на стр. 155 допущена опечатка, т.к. эта формула дает высоту устойчивого вертикального откоса, а не нагрузку, как указано в [5].

Метод конечных элементов (PLAXIS, MIDAS) дает возможность упругопластического расчета двухмерных и трехмерных откосов/склонов. Но в этих методах не учитывается образование сдвиговых разрывов грунта в «пластических» зонах. Поэтому результаты решения зависят от влияния размера ячейки сетки разбиения расчетной области на конечные элементы.

Итак, за прошедшие 100 лет начиная с появления первого метода расчета устойчивости откоса по гипотезе о круглоцилиндрической форме поверхности скольжения, предложенного в 1916 г. Р.Петерсоном (позднее «метод Шведского Геотехнического Общества»), разработано много таких методов, но, в основном, они отличаются лишь принятой формой линии скольжения, что не является существенным фактором. Гораздо важнее учет пространственного характера разрушения и пространственной неоднородности грунтовых массивов. Но именно это в данном методе не учитывается.

Направления новых исследований

Два примера недавних аварий (см. выше) указывают направления новых исследований.

Авария дамбы хвостохранилища (см. рис.1) произошла, на наш взгляд, из-за растяжения этой дамбы вдоль ее продольной оси, имеющей неправильную кольцевую форму, давлением жидких отходов изнутри наружу. Этот эффект был усилен прослойкой слабых ледниковых глин, залегающих ниже основания дамбы. В данном случае проектный расчет в условиях плоской задачи не представителен. Это типичная пространственная задача. Такой расчет можно сделать методом конечных элементов, по крайней мере для осесимметричного случая, но именно решение пространственной задачи отражает реальность. Как уже указано выше, в программах МКЭ грунтовая среда – всегда сплошная и не учитывает возникновение сдвиговых разрывов при достижении предельного состояния, что ведет к завышению прочности грунта на сдвиг.

Прогрессирующее разрушение откоса армогрунтовой насыпи (рис. 2, 3) продолжалось около двух лет. Не было аварийных разрушений, постепенно армогрунтовый откос пришел в непригодное состояние.

Читать еще:  Материал для наружнего откоса

Это важный случай из практики, т.к. сейчас широко используются методы армирования откосов различными материалами и способами.

Уточнение параметрической формы линии скольжения при расчете устойчивости откоса не является существенным, т.к. это мало влияет на величину расчетного коэффициента устойчивости. Гораздо важнее учесть влияние возможной неравномерности свойств грунтов, слагающих откос, между точками измерения параметров грунта. При отсутствии таких данных параметры грунтов можно варьировать с помощью аппроксимирующей функции между точками измерения, оценивая получаемую разницу результатов расчета, например, в %. Для этого нужно выполнять не один, а серию расчетов, учитывающих разброс исходных данных.

Большинство существующих методов расчета армогрунтовых откосов предполагают замену арматуры на усилия, равные ее прочности на разрыв, и иногда на срез. А.Savitzky [6] предложил заменять арматуру на эквивалентное сцепление грунта, что сводит расчет устойчивости армогрунтового откоса к расчету откоса с увеличенным сцеплением (В.А.Барвашов [7]).

Автор надеется, что представленная информация инициирует дискуссию по рассмотренным вопросам.

Расчёт устойчивости откосов предпортальной выемки

Расчет устойчивости откосов предпортальной выемки производится аналитическим способом, предложенным проф. Г. М. Шахунянцем [I]. Данный расчет предполагает, что поверхность смещения – плоскость, и сводится к определению коэффициента устойчивости, который определяется по формуле

(1.19)

здесь обозначения аналогичны обозначениям принятым в формуле (1.14).

Выразив значения нормальной, N, и тангенциальной, Т , составляю-щих веса грунта через вес смещающегося клина и произведя тригономет-риические преобразования, получим значение коэффициента устойчивости в виде

(1.20)

гггдеfкоэффициент внутреннего трения грунта;
bугол наклона возможной поверхности обрушения к горизонту, град.;
Судельное сцепление грунта, т/м 2 ;
gобъемный вес грунта, т/м 3 ;
Нприведенная высота откоса, м (рис. 1.2);
aугол наклона откоса выемки к горизонту, град.

Приведенная высота откоса, Н, м, определяется по формуле

(1.21)

гдеhкоэффициент внутреннего трения грунта;
qинтенсивность нагрузки на поверхности откоса, т/м 2 ;
eугол наклона верхней поверхности откоса к горизонту;
Кглубина кювета (К = 0,6 м).

При отсутствии нагрузки на поверхности откоса

, (1.22)

Критическое положение плоскости обрушения, при котором коэффициент устойчивости принимает минимальное значение Кmin, определяется последовательным изменением угла b или по формуле

(1.23)

где bкр – критический угол наклона поверхности обрушения к горизонту, град.

Критический угол наклона bкр определяется по формуле

, (1.24)

, (1.25)

, (1.26)

, (1.27)

где αо и bо — расчётные коэффициенты.

Критический угол bкр должен удовлетворять требованию

(1.28)

П р и м е р. Примем следующие исходные данные: глубина выемки (по оси земляного полотна) h = 8,5 м; угол внутреннего трения грунта j=31 0 ; объемный вес грунта g=2,1 т/м 3 ; удельное сцепление грунта С=1,5 т/м 2 , интенсивность приложения равномерно распределенной нагрузки на поверхности откоса q=0.

Расчет критического коэффициента устойчивости производится в следующем порядке.

1. Определяется приведенная высота откоса по формуле (1.22):

м.

2. Определяется угол наклона критической плоскости смещения грунта откоса к горизонту по формулам (1.4), (1.25), (1.26), (1.27):

При крутизне откосов 1:m=1:1,5, a=33 0 43’, sina=0,555 по формуле (1.24) находим

Находим абсолютное значение

Требованию (1.28) удовлетворяет b”кр, т.е.

Коэффициент устойчивости Кmin определяется по формуле (1.23),

Следовательно откос предпортальной выемки при принятых исходных данных устойчив

2. ПРОЕКТИРОВАНИЕ И РАСЧЕТ ДРЕНАЖА

При промерзании влажных грунтов (глин, суглинков, супесей, мелких и пылеватых песков) происходит пучение. Пучение – это общее или местное поднятие поверхности грунта или рельсового пути, причиной которого является промерзание грунта и увеличение в объеме (на 19%) замерзающей в нем воды.

При замерзании обычно происходит более или менее равномерное пучение на больших участках. В отдельных местах величина равномерного

вспучивания нарушается: эти местные искажения называют пучинами. Пучины могут быть в виде пучинных горбов, впадин и перепадов.

Величина равномерного пучения бывает 30-40 мм, неравномерного – 200 мм и более.

Пучины делятся на балластные и грунтовые (коренные), при этом у балластных пучин зона пучинообразования находится в пределах балластного слоя, грунтовых пучин – в земляном полотне. Высота балластных пучин 20-25 мм.

Для ликвидации балластных пучин проводят следующие мероприятия: прочистку кюветов, замену или очистку загрязненного балластного слоя, ликвидацию или осушение углублений в основной площадке земляного полотна.

Для ликвидации грунтовых пучин применяют: замену пучащего грунта дренирующим, выведение зоны промерзания из слоя грунта, вызывающего пучины и понижение горизонта грунтовых вод с целью выведения его из зоны промерзания.

В настоящее время практически применяются два последних способа.

Понижение горизонта грунтовых вод под земляным полотном производится с помощью односторонних или двухсторонних дренажей, которые закладываются под кюветами или на откосах.

Согласно классификации, предложенной проф. Г.М. Шахунянцем, дренажи различают по охвату осушаемого объекта и характеру работы на одиночные, групповые и дренажную сеть.

Одиночный дренаж является изолированным сооружением, обеспечивающим осушение определенного объекта.

Групповой дренаж – это ряд отдельных дренажей, не связанных друг с другом в единую систему, но созданных для одной цели. Групповой дренаж по сравнению с одиночным сокращает сроки осушения объекта.

Дренажной сетью называют комплекс дренажей, связанных друг с другом в единую систему.

По характеру сбора и отвода грунтовых вод, конструктивным особенностям и способам сооружения дренажи делятся на горизонталь-ные, вертикальные, комбинированные и биологические

Горизонтальные дренажи бывают открытые в виде лотков или канав и закрытые. Закрытые дренажи – наиболее распространённые.

Вертикальные дренажи применяются как буровые или шахтные водоспускные колодцы и значительно реже с откачкой воды.

Комбинированные дренажи представляют собой различные сочетания горизонтальных и вертикальных дренажей.

Биологический дренаж представляет собой систему осушения грунта путем испарения влаги различными растениями (посадка деревьев, создание травяного покрова).

Дренаж называется несовершенным, если его дно расположено выше водоупора, т.е. происходит подток воды со дна дренажа и совершенным, если его дно опирается на водоупор или врезано в него.

Наибольшее распространение нашли трубчатые дренажи горизонтального типа.

Устройство дренажей дает большой эффект в борьбе с пучинами при грунтах, хорошо отдающих воду.

РАСЧЕТ УСТОЙЧИВОСТИ ОБВОДНЕННЫХ ОТКОСОВ

Расчет общей устойчивости обводненных откосов отличается наличием в приоткосном массиве сил гидростатического взвешивания и гидродинамического давления.

Последовательность расчета: на разрез наносится депрессионная кривая; определяется положение наиболее опасной поверхности скольжения (без учета гидростатических и гидроди­намических сил); выделенный «оползневой клин» разбивается вертикальными линиями на отдельные блоки; результирующая гидростатических и гидродинамических сил в пределах i-го блока определяется по формуле

где gb — плотность воды; Hi и gi — соответственно напор и ордината кривой скольжения, средние в пределах блока; а — ширина блока; ai — средний угол наклона касательной к кривой скольжения в пределах блока.

Читать еще:  Профиль для оформления откоса пластиковый с сеткой

Коэффициент запаса устойчивости устанавливается из вы­ражения

η=

где Pi — масса i-го блока вместе с заключенной в нем водой; — масса воды над поверхностью откоса; b — угол откоса.

Воздействие гидростатических и гидродинамических сил на общую устойчивость откосов будет существенным при условии, что значительная часть призмы возможного оползания нахо­дится ниже депрессионной (пьезометрической) кривой, или же при больших перепадах напоров в прибортовой зоне. Особенно большое значение эти силы приобретают в случаях: наличия в основании откоса недренируемых напорных горизонтов; расположения карьера вблизи реки или от­крытого водоема; подтопленного откоса.

Если подтопленный откос сложен невзвешиваемыми породами, то для оценки его устойчивости целесообразно применять метод многоугольника сил.

Оценку устойчивости откосных сооружений гидроотвалов (упорных призм и дамб обвалования) следует производить с учетом сил гидростатического взвешивания и гидродинамического давления, а также нестабилизированного состояния глинистых водонасыщенных пород.

Для расчета устойчивости нестабилизированных породных масс сухих и гидравлических отвалов наиболее пригодны методы алгебраического суммирования сил (при монотонной кри­волинейной поверхности скольжения) и многоугольника сил.

Избыточное давление воды в порах глинистых пород (поровое давление) оказывает существенное влияние на устойчивость откосных сооружений. Обычно оно возникает в ре­зультате восприятия поровой водой внешней нагрузки. Уплотнение и упрочнение пород определяются скоростью рассеивания порового давления. Возникновение порового давления уменьшает сопротивление породы сдвигу.

РАСЧЕТ УСТОЙЧИВОСТИ ОТВАЛОВ

Наиболее распространенным видом деформаций отвалов являются оползни, возникающие, в основном, в результате несоответствия геометрических параметров отвалов несущей спо­собности отвальной массы и пород основания отвала.

В зависимости от положения нижней границы поверхности скольжения оползни разделяют на надподошвенные, подошвенные (контактные) и подлодошвенные.

Надподошвенныеоползни отвалов характеризуются плав­ной криволинейной поверхностью скольжения, образующейся в теле отвала и выходящей в нижнюю бровку откоса.

Подошвенные(контактные) оползни характеризуются ломаной поверхностью скольжения, проходящей по контакту отвал — основание или контакту между слоями в породах основания.

Подподошвенныеоползни возникают при размещении отвалов на основании, породы которого обладают низкой несущей способностью или в них сохраняются высокие напоры. Они характеризуются плавной криволинейной поверхностью скольжения, захватывающей породы основания, и образованием вала выпирания у нижней бровки откоса.

Горно-геологические условия отвалообразования можно представить в виде следующих основных схем:

• отвалы прочных или слабых пород на прочном основании;

• то же, на наклонном слоистом основании;

• то же, на слабом слое (подподошвенный тип оползня).

Расчеты предельных параметров внешних и внутренних отвалов производятся с коэффициентом запаса.

Рекомендуемые значения коэффициента запаса устойчивости приведены в таблице.

Отвалообразующие породыТип отвалаОснование отвалаРекомендуемый коэффициент запаса устойчивости —
Скальные и полускальныеВнешнийПрочное1,05
ВнутреннийСлоистое1,05*-1,10
Рыхлые песчано-глинистыеВнешнийПрочное1,10
Слоистое1,10*-1,20
ВнутреннийПрочное1,10*-1,15
Слоистое1,20
Слабые глинистыеВнешнийПрочное1,20
Слабое,1,20*-1,30
слоистое1,20
ВнутреннийПрочное Слоистое1,20*-1,30
Скальные, полускальныеНагруженныйЛюбое1,10*-1,20
Рыхлые песчано-глинистые1,20*-1,30
* Показатели физико-механических свойств пород отвалов и их оснований определяются методом обратных расчетов или натурными испытаниями.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Расчет устойчивости откоса

    Дмитрий Малявко 3 лет назад Просмотров:

1 ООО «БелЭкспертПроект» ООО «ЭкспертПроектСтрой» Реконструкция биогазовой станции «Лучки» расположенной в с. Лучки, Прохоровского района, Белгородской области Расчет устойчивости откоса Навозонакопители 2016

2 ООО «БелЭкспертПроект» ООО «ЭкспертПроектСтрой» Реконструкция биогазовой станции «Лучки» расположенной в с. Лучки, Прохоровского района, Белгородской области Расчет устойчивости откоса Навозонакопители Директор С.Л.Груздова Изм докумен. Подпись Дата Разраб. Резниченко Расчет устойчивости откоса Проверил Груздова П 1 Нач.отдела Груздова ГИП Главный инженер проекта Тихонова Е.А. Тихонова Стадия ов ООО «БелЭкспертПроект» 000 «ЭкспертПроектСтрой»

3 Оглавление 1. Исходные данные Характеристика сооружений Расчет откоса графоаналитическим методом многоугольников сил Г.М. Шахунянца Расчет откоса методом Федоровского-Курилло Выводы по результатам поверочных расчетов устойчивости откоса и рекомендации по его усилению Расчет откоса после усиления. 9 Изм докум. Подп. Дата 2

4 1. Исходные данные Характеристика сооружений Навозохранилище представляет собой 2 сооружения, прямоугольные в плане, с размерами по внешней бровке 100х70 м каждое. Глубина общая 5 м, рабочая 3,5м. Изм докум. Подп. Дата Рис. 1 Схема расположения навозохранилища 3

5 Рис.2 Поперечный разрез борта навозохранилища Борта навозохранилищ сложены уплотнённым грунтом со следующими характеристиками: ИГЭ-3 — суглинок светло-коричневый (d II-III ) твердый низкопористый просадочный. Мощность слоя составляет 2,6м 4,2м. Частные значения характеристик суглинка, их квадратичные отклонения и коэффициенты вариации приведены в приложении 3.5. Нормативное значение компрессионного модуля деформации суглинка в интервале давления 0,1-0,2МПа составляет 4,5МПа при естественной влажности и 2,9МПа в замоченном состоянии. С учётом корректировочного коэффициента на штампоопыты m k, равного 3,6 (т.5.1 СП ), значение модуля деформации составляют соответственно 16 и 10МПа. Степень изменчивости сжимаемости грунта составляет 1,6. Суглинки в условиях замачивания под нагрузкой обладают просадочными свойствами. Относительная просадочность (доли единиц) составляет при нагрузках (МПа): 0, ,0033 0, ,0067 0, ,0104 0, ,0140 0, ,0175 0, ,0215 Начальное давление, при котором проявляются просадочные свойства суглинков, составляет 0,15МПа (1,5 кг/см 2 ). Тип грунтовых условий по просадочности первый (СНиП *. Основания зданий и сооружений). Значения показателей прочности суглинка по результатам лабораторных испытаний в условиях неконсолидированного среза с предварительным водонасыщением составляют: Расчетное при 0,85 Нормативное Расчетное при 0,95 17 Удельное сцепление , кпа 18 Угол внутреннего трения , град. Таблица 1. Расчетные характеристики грунта Параметры среза Модуль Номенклатурный вид Плотность Сцеплени ИГЭ грунта Т/м 3 дефор. Угол внутр. е МПа трения, градус кпа Суглинок твердый 3 1,77/1,76 16/10 17/16 18/18 просадочный Изм докум. Подп. Дата 4

6 Согласно 9.14 СП Основания зданий и сооружений, при проектировании оснований подземных частей сооружений, устраиваемых с обратной засыпкой грунта, расчетные значения характеристик грунтов обратной засыпки (γ I,φ I, c I), уплотненных не менее чем до k сот = 0,95 их плотности в природном состоянии, допускается устанавливать по расчетным характеристикам тех же грунтов в природном состоянии (γ I,φ I, c I), принимая γ I = 0,95γ I ; φ I = 0,9φ I ; c I = 0,5c I, при этом следует принимать c I не более 7 кпа. Характеристики грунта после устройства борта навозохранилища: γ I = 0,95 х 1,77 = 1,68 т/м3; φ I = 0,9 х 18 = 16.2 градуса; c I = 0,7 т/м Расчет откоса графоаналитическим методом многоугольников сил Г.М. Шахунянца В основе расчета сохраняется гипотеза затвердевшего тела. Эта гипотеза нарушается, если поверхность смещения не плоскость и не поверхность круглого цилиндра (по которым вышележащий массив действительно может смещаться, как одно целое), так как при любом ином очертании поверхности при смещении в массиве возникают местные напряжения. Но эти местные напряжения могут при движении массива создавать лишь чисто местный эффект в виде отдельных трещин разрыва или местных уплотнений грунта. Так как расчет ведется для определения условий устойчивости массива, то представляется возможным сохранить как рабочую гипотезу предположение о затвердевшем теле. Данное предположение лежит в обычных рамках тех допущений, которые приняты практически в обычных расчетах строительной механики. В большом количестве случаев строительных расчетов деталь рассматривается как одно целое и рассчитывается на общие напряжения. Если требуется, то дополнительно учитывается влияние местных напряжений. Рис.3 Расчетная схема откоса Изм докум. Подп. Дата 5

Читать еще:  Компании по установке откосов

7 Рассмотрим наиболее вероятную поверхность смещения и определим основные характеристики откоса для расчета его устойчивости: S площадь сечения откоса, м 2 ; l длина площадки смещения, м; P вес полосы откоса шириной 1м, т; N нормальная составляющая силы P к плоскости поверхности смещения откоса, т; Q тангенциальная составляющая силы Р, т; T сила трения, т; α угол наклона плоскости смещения к горизонтальной поверхности. Вес полосы откоса шириной 1 м определяется как произведение площади сечения S на удельный вес грунта в обводнённом состоянии γ в, с учетом коэффициента по нагрузке γ n =1,2. Значения N и Q определяются, к векторная сумма, равная Р. Сила трения T = N tg φ I. Исходные данные сведены в таблицу: Таблица 2. Исходные данные S, м2 l, м α, градус α, рад P, т N, т Q, т С, т T, т Согласно СП расчет противооползневых и противообвальных сооружений, проектируемых откосов и склонов производится исходя из условия: где F — расчетное значение обобщенного силового воздействия на сооружение или его конструктивные элементы (сила, момент, напряжение), определяемое в соответствии с СП , деформации (смещения) или другие параметры, по которым производится оценка предельного состояния; ψ — коэффициент сочетания нагрузок, принимающий значения: При расчетах по предельным состояниям первой группы: для основного сочетания эксплуатационного периода ψ 1,0; то же, для строительного периода и ремонта ψ=0,95; для особого сочетания нагрузок, в том числе сейсмической нагрузки на уровне проектного землетрясения (ПЗ) годовой вероятностью 0,01ψ 0,95; прочих нагрузок годовой вероятностью 0,001 и максимального уровня расчетного землетрясения (МРЗ) ψ 0,90. При расчетах по предельным состояниям второй группы на основное сочетание нагрузок ψ 1,0; R — расчетное значение обобщенной несущей способности, прочности, деформации (смещения) или другого параметра, устанавливаемого соответствующими нормами проектирования в зависимости от типа конструкции и используемых материалов с учетом коэффициентов надежности по материалу γ m и (или) грунту γ g ; γn — коэффициент надежности по ответственности сооружения: При расчетах по предельным состояниям первой группы в зависимости от уровня ответственности согласно ГОСТ Р 54257: 1а — γ n 1,25; 1б — γ n 1,20 ; 2 — γ n 1,15 ; 3 — γ n 1,10. При расчетах по предельным состояниям второй группы γ n 1,00. При расчетах устойчивости склонов, сохраняемых в естественном состоянии, γ n принимается как для сооружения или территории, которые могут перейти в непригодное состояние при разрушении склона. При расчетах природных склонов γ n 1,0; Изм докум. Подп. Дата 6

8 γd — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов со временем, степень точности исходных данных, приближенность расчетных схем, тип сооружения, конструкции или основания, вид материала и другие факторы; устанавливается в диапазоне 0,75 γ d 1,00 нормами проектирования отдельных видов сооружений. Расчет устойчивости проектируемых склонов и откосов в соответствии с зависимостью 5.1 допускается выполнять только для простейших форм поверхности скольжения, отделяющей призму обрушения от неподвижного массива грунта (в виде отрезка прямой или окружности). В этом случае зависимость 5.1 записывается в виде: где — нормированное значение коэффициента устойчивости склона (откоса); k st — расчетное значение коэффициента устойчивости, определяемое как отношение удерживающих сил (моментов) R, действующих вдоль линии скольжения, к сдвигающим силам (моментам) F. Результаты расчета сведены в таблицу: Таблица 3. Результаты расчета R, т F, т К st ψ γ n γ d [K st ] K st /[K st ] Вывод: при данных параметрах откос является неустойчивым и требует усиления. Отношение расчетного значения коэффициента устойчивости к нормированному K st /[K st ]=0, Расчет откоса методом Федоровского-Курилло Расчет проведён в расчетном комплексе SCAD Office 11.5, в модуле «Откос». Схема откоса Список грунтов Наименование Суглинок просадочный Угол внутреннего трения Удельное сцепление Удельный вес град Т/м 2 Т/м Тип Скважины Наименование Координата (м) Описание скважин Грунт Изм докум. Подп. Дата Отметка верхней границы 1) 1 0 Суглинок просадочный 208 2) 2 1 Суглинок просадочный 208 3) Суглинок просадочный ) Суглинок просадочный ) 5 15 Суглинок просадочный

9 Параметры расчета Номер задачи Левая граница начала оползня Правая граница начала оползня Левая граница конца оползня Правая граница конца оползня м м м Допускаемая погрешность 0.01 м Линии скольжения Номер задачи Коэффициент запаса устойчивости Цвет лини скольжения Вывод: при данных параметрах откос является неустойчивым и требует усиления. Коэффициент запаса устойчивости K=0,948. Откос необходимо укрепить методом устройства предохранительной бермы. Методика усиления приведена в техническом решении приложения 1. Изм докум. Подп. Дата 8

10 4. Выводы по результатам поверочных расчетов устойчивости откоса и рекомендации по его усилению 1. Устойчивость откоса лагуны при условии полного замачивания грунта земляного сооружения не обеспечена. 2. Наиболее вероятная линия скольжения откоса указана на рис Основными нагрузками на земляное сооружение откоса лагуны, приводящими к сдвигу массива являются: — давление жидкости; — собственный вес обводнённого грунта. 4. С целью обеспечения гарантируемой устойчивости откоса необходимо его усиление одним из следующих способов: — создание предохранительной бермы; — уполаживание откоса. 5. Рекомендуется усиление созданием предохранительной бермы. 5. Расчет откоса после усиления Расчет откоса после усиления представлен двумя расчетными схемами: Рис.4 Расчетная схема откоса после усиления 1 Рис.5 Расчетная схема откоса после усиления 2 Изм докум. Подп. Дата 9

11 Методика расчета приведена в разделе 2 данного отчёта. Исходные данные сведены в таблицу: Таблица 3. Исходные данные Сечение S, м2 l, м α, градус α, рад P, т N, т Q, т С, т T, т Результаты расчета сведены в таблицу: Таблица 4. Результаты расчета R, т F, т К st ψ γ n γ d [K st ] K st /[K st ] Вывод: при данных параметрах откос после усиления является устойчивым. Отношение расчетного значения коэффициента устойчивости к нормированному K st /[K st ]=2,34 для верхнего откоса и 1.75 для нижнего. Требуемый объем грунта для устройства предохранительной бермы м 3. Изм докум. Подп. Дата 10

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector