Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Причины потери устойчивости откосов

Устойчивость откосов и склонов — реферат

Устойчивость откосов и склонов

Общие положения

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Рис. 1. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а) – расчетная схема; б) – определение положения наиболее опасной поверхности скольжения; 1, 2, … — номера элементов.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов (тогда и долгое время назывался методом шведского геотехнического общества).

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 1, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра . Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

, (1)

где и — моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

Для определения входящих в формулу (1) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т.д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

; (2)

Соответственно момент сил, вращающих отсек вокруг 0, определился как

(3)

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

, (4)

где — длина дуги основания i-го элемента, определяемая как . Здесь — ширина элемента)

Отсюда момент сил, удерживающих отсек, будет иметь вид

. (5)

Учитывая формулу (1), окончательно получим

. (6)

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задавясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис.1,б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

Мероприятия по повышению устойчивости откосов и склонов.

Одним из наиболее эффективных способов повышения устойчивости откосов и склонов является их выполаживание или создание уступчатого профиля с образованием горизонтальных площадок (берм) по высоте откоса. Однако это всегда связано с увеличением объемов земляных работ. При относительно небольшой высоте откосов может оказаться эффективной пригрузка подошвы в его низовой части или устройство подпорной стенки, поддерживающей откос. Положительную роль также играют закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит.

Важнейшим мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывается устройством нагорных канав, отведением воды с берм. Подземные воды, высачивающиеся на поверхности откоса или склона, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости разрабатываются сложные конструктивные мероприятия типа прорезания потенциально неустойчивого массива грунтов системой забивных или набивных свай, вертикальных шахт и горизонтальных штолен, заполненных бетоном и входящих в подстилающие неподвижные части массива. Используется также анкерное закрепление неустойчивых объемов грунта, часто во взаимодействии с подпорными стенками или свайными конструкциями.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.shpora-zon.narod.ru/

На данный момент в нашей базе:
Рефераты: 60160
Дипломные работы: 626
Курсовые работы: 2381
Шпаргалки: 1034
Доклады: 12078
Сочинения: 5238
Изложения: 1016
Топики: 1546
Бестселлеры: 9
Авторские материалы: 6802
Отчеты: 1

Всего работ: 90891

[Новые поступления]

Интересные и нужные сведения о строительных материалах и технологиях

Потеря несущей способности грунта

Под термином «потеря несущей способности грунта» мы понимаем явление выдавливания грунта по сторонам фундамента с выпучиванием его вверх; при этом сооружение опускается и может одновременно покоситься, т. е. дать крен. Потеря несущей способности грунта под подошвой фундамента происходит в том случае, когда прочность грунта на сдвиг по поверхности скольжения недостаточно велика по сравнению с фактическими напряжениями, возникающими от нагрузки (рис. 7). Нагрузка на фундамент, при которой происходит потеря несущей способности грунта, называется предельной нагрузкой, или наибольшей несущей способностью; во избежание потери несущей способности грунта основание должно иметь определенный запас прочности, который регламентируется нормами DIN 4017, чч. 1 и 2 (примеры исследований потери несущей способности грунта — см. [3]). Если осадки, возникающие из-за сжимаемости грунта при определенных нагрузках от веса сооружений, представляют собой деформационную задачу, то при потере несущей способности дальнейшая осадка грунта невозможна; здесь в зоне вытеснения грунта из-под фундамента возникает проблема равновесия. Опасность потери несущей способности грунта тем больше, чем меньше ширина фундамента, глубина его заложения и Прочность грунта на сдвиг; к потере несущей способности грунта может привести и внецентренное загружение фундамента.

Читать еще:  Улетели принципы под откос

При традиционных методах строительства с обычными нагрузками от зданий на грунт, достаточно широкими фундаментами и достаточно глубоким их заложением для определения допустимых нагрузок на подошву фундамента рекомендуется, как правило, сначала сделать расчет фундаментов по деформациям и лишь затем приступить к определению возможной потери несущей способности грунтов основания.
Следует указать на то, что опасность потери несущей способности грунта под нагрузкой может усилиться при подъеме грунтовых вод и уменьшении объемной массы грунта. При первых признаках потери несущей способности грунта (наклон и перекос сооружения, горизонтальные сдвиги, вспучивание грунта в непосредственной близости от здания) необходимо немедленно принять такие контрмеры, как установка дополнительных креплений, пригруз поверхности грунта, понижение уровня грунтовых вод или упрочнение грунта (например, с помощью инъектирования) [1, 2 и 3].

Для полноты картины следует еще упомянуть о потере несущей способности грунтов на всем участке строительства. Это явление возникает при наличии перепадов уровня территории строительства (подпорные стенки, откосы, крутопадающие слои грунта), когда нагрузка от здания и собственный вес грунта превышают сопротивление грунта сдвигу, и сооружение с примыкающими к нему участками почвы сдвигается по поверхности скольжения. Причиной этого часто бывают исключительно сильные атмосферные осадки и вызванное ими усиление давления воды в порах грунта.

Если в непосредственной связи со строительством многоэтажного здания планируется устройство грунтовых откосов, то из соображений обеспечения устойчивости грунтов на планируемой территории следует производить расчет устойчивости откосов, ибо существует опасность сдвига откоса вдоль поверхности скольжения, т. е. сползание откоса (DIN 4084, ч. 2). Методику расчета откосов см. [1].

География: Устойчивость откосов и склонов, Реферат

Общие положения

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Рис. 1. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а) – расчетная схема; б) – определение положения наиболее опасной поверхности скольжения; 1, 2, … — номера элементов.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов (тогда и долгое время назывался методом шведского геотехнического общества).

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 1, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра . Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

, (1)

где и — моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

Для определения входящих в формулу (1) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т.д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

; (2)

Соответственно момент сил, вращающих отсек вокруг 0, определился как

(3)

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

Читать еще:  Укрепление откосов выемки матрасами рено

, (4)

где — длина дуги основания i-го элемента, определяемая как . Здесь — ширина элемента)

Отсюда момент сил, удерживающих отсек, будет иметь вид

. (5)

Учитывая формулу (1), окончательно получим

. (6)

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задавясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис.1,б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

Мероприятия по повышению устойчивости откосов и склонов.

Одним из наиболее эффективных способов повышения устойчивости откосов и склонов является их выполаживание или создание уступчатого профиля с образованием горизонтальных площадок (берм) по высоте откоса. Однако это всегда связано с увеличением объемов земляных работ. При относительно небольшой высоте откосов может оказаться эффективной пригрузка подошвы в его низовой части или устройство подпорной стенки, поддерживающей откос. Положительную роль также играют закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит.

Важнейшим мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывается устройством нагорных канав, отведением воды с берм. Подземные воды, высачивающиеся на поверхности откоса или склона, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости разрабатываются сложные конструктивные мероприятия типа прорезания потенциально неустойчивого массива грунтов системой забивных или набивных свай, вертикальных шахт и горизонтальных штолен, заполненных бетоном и входящих в подстилающие неподвижные части массива. Используется также анкерное закрепление неустойчивых объемов грунта, часто во взаимодействии с подпорными стенками или свайными конструкциями.

Основные виды нарушения устойчивости и расчетные модели

Оценка возможности выпора грунта из-под сооружения и потери устойчивости откосов грунтовых сооружений и естественных склонов во многих случаях является определяющей в процессе проектирования сооружений. Для гидротехнических сооружений, обычно воспринимающих большие давления воды и грунта, выполнение условий их устойчивости в значительной мере определяет их конструкцию, размеры, объемы и, как следствие, стоимость. В нормативных документах оценка и обеспечение устойчивости сооружений обычно называются проектированием по первому предельному состоянию.

Характер нарушения устойчивости. В общем случае нарушение устойчивости происходит путем образования области существенных смещений массивов грунта с появлением зоны его выпора или обрушения, полным или частичным нарушением структуры грунта, нередко последующими разрывами сплошности массива, образованием трещин, сплывов и др.

Потеря устойчивости основания может возникать при превышении вертикальной нагрузкой предельной несущей способности грунтов основания. В этом случае может наблюдаться как односторонний (рис. 7.1, а), так и двусторонний (рис. 7.1, б) выпор грунтов основания. При действии горизонтальных нагрузок потеря устойчивости возникает в результате сдвига сооружения по плоскости подошвы фундамента (рис. 7.1, в) (плоский сдвиг) или с захватом грунта основания (рис. 7.1, г) (глубинный сдвиг). Возможен промежуточный случай — частичный сдвиг (проскальзывание) сооружения по подошве с образованием в низовой части подошвы области выпора грунта, т. е. с частичным захватом грунтов основания (рис. 7.1, д) (смешанный сдвиг). При наличии слабой прослойки или подстилающих слоев основная часть поверхности сдвига может проходить по этим слоям или линзам (рис. 7.1, е).

Обрушение откосов возможно как в пределе самого откоса (рис. 7.1, ж), так и с захватом грунтов основания, т. е. с образованием области выпора. На расположение поверхностей скольжения оказывает влияние наличие менее прочных элементов грунтового сооружения (рис. 7.1, з) или слабых прослоек в основании (рис. 7.1, и).

Основные расчетные схемы и модели. Для оценки устойчивости применяют две основные расчетные модели.

Первая модель предполагает, что либо вся область выпора или обрушения (рис. 7.2, а), либо ее отдельные отсеки (рис. 7.2, б) являются жестким недеформируемым телом. Такую модель нередко называют моделью отвердевших отсеков обрушения или выпора. На всей поверхности скольжения выпора или обрушения принимается одновременное наличие состояния предельного равновесия грунта, т. е. по всей границе справедливость зависимости Кулона. Грунт за пределами отсеков обрушения также принимается недеформируемым.

В большинстве способов расчета форма поверхности скольжения (сдвига) отвердевших отсеков принимается заданной. Для условий плоской задачи наиболее часто используют плоские и круглоцилиндрические, а иногда ломаные поверхности сдвига (скольжения).

Вторая модель для оценки устойчивости грунтовых массивов основана на использовании решений теории предельного равновесия. В этой модели принимается, что одновременно во всех точках грунтовой среды имеет место предельное напряженное состояние, т. е. везде справедлива зависимость Кулона и везде имеется система поверхностей скольжения (рис. 7.2, г). В отличие от модели «отвердевших» отсеков в ней поверхности скольжения определяются из самой постановки и решения задачи. Методы оценки устойчивости оснований и откосов, основанные на модели теории предельного равновесия, кратко рассмотрены в гл. 9.

Таковы две основные и весьма противоположные по своим физическим предпосылкам модели, используемые для оценки устойчивости
сооружений и склонов. Процесс нарушения устойчивости реальных грунтовых сред весьма сложен. Формирование области пластических деформаций и поверхностей сдвига происходит постепенно и сопровождается существенными деформациями объема и формы грунта. В то же время во многих случаях часть грунта остается недеформированной и выделяется в виде действительных отсеков, а иногда формируется ярко выраженная поверхность скольжения — сдвига, выше и ниже которой грунт далек от предельного напряженного состояния и даже после обрушения или выпора остается частично в ненарушенном состоянии.

Читать еще:  Перфорированный уголок для откосов ставить или нет

Рис. 7.2. Расчетная модель монолитных отсеков обрушения (а—в) и модель теории предельного равновесия (г)

Поэтому в последние годы делаются попытки оценить устойчивость сооружений на основе более общих нелинейных моделей, в частности, упругопластической, т. е. на основе решения смешанной задачи. В отличие от рассмотренных такие модели позволяют для действующих нагрузок оценить развитие областей пластических деформаций, величины смещений сооружений, учесть деформации грунтов. Однако принципов или даже приемов, удовлетворительных для оценки степени устойчивости сооружений, по этим менее абстрактным моделям пока не имеется.

Основные практические, инженерные способы оценки устойчивости сооружений основаны на модели отвердевших отсеков обрушения при заданных очертаниях поверхностей сдвига. Развитию этих способов способствовала многочисленная плеяда исследователей, а число публикаций в этом направлении исчисляется сотнями. Можно отметить в качестве основных работы Г. Е. Паукера, С. И. Бельзецкого, Н. М. Герсеванова, В. Феллениуса, Г. Крея, К- Терцаги, Д. Тейлора, Р. Р. Чугаева, Н. Н. Маслова, М. Н. Гольдштейна, А. Скемптона, А. Бишопа, А. Л. Можевитинова. Некоторые из предложенных способов будут рассмотрены ниже в этой главе.

Контекстная справка

Воздействие воды

В разрез откоса можно задавать грунтовую воду при помощи одной из пяти опций:

1) Уровень грунтовых вод

Уровень грунтовых вод задаём в виде полигона. Его можно любым образом изгибать, он может полностью находиться ниже поверхности или выходить над поверхность рельефа.

Влияние воды учитываем как поровое давление, действующее в грунте и понижающее сопротивление сдвигу. Поровое давление рассчитываем как гидростатическое давление, т.е. удельный вес воды умножаем на уменьшенную высоту уровня воды:

удельный вес воды

уменьшенная высота уровня воды

вертикальное расстояние точки, в которой рассчитываем поровое давление до точки на зеркале

наклон зеркала грунтовых вод

В расчет всегда входит равнодействующая порового давления в определенном отсеке блока:

поровое давление в точке

Ниже уровня грунтовых вод анализ учитывает удельный вес водонасыщенного грунта γsat и подъёмную силу воды; выше уровня грунтовых вод — заданное значение удельного веса грунта γ . Силы сдвига на поверхности скольжения рассчитываются по формуле:

сила сдвига на участке поверхности скольжения

нормальная сила на участке поверхности скольжения

равнодействующая порового давления на участке поверхности скольжения

угол внутреннего трения грунта

длина участка поверхности скольжения

В случае состояния полного напряжения (задаём в диалоговом окне «Грунты») используются полные параметры, а поровое давление всегда принимается равным 0.

2) Уровень грунтовых вод с воздействием абсорбции

Уровень абсорбции можно задать над заданным уровнем грунтовых вод. В пространстве между уровнем воды и уровнем абсорбции принимается отрицательное значение порового давления u . Абсорбция увеличивается как отрицательное гидростатическое давление в направлении от уровня грунтовых вод до уровня абсорбции.

3) Резкое падение УГВ

Над заданным уровнем воды можно задать исходный уровень воды, моделирующий состояние непосредственно перед резким падением УГВ.

Резкое падение воды

Сперва рассчитываем исходное поровое давление u :

высота от исходного уровня воды к точке P

удельный вес воды

Высота h — это расстояние от точки P (где определено значение порового давления) до исходного уровня воды — это в случае, когда исходный уровень воды находится ниже поверхности земли. Если исходный уровень воды расположен выше поверхности земли высота h принимается от точки P до уровня земли (см. разрез 1 на рис.). Когда оба уровня воды находятся выше поверхности земли, то высота h — будет расстоянием от точки P до пониженного уровня воды (см. разрез 2 на рис.).

Вторым шагом будет определение убыли порового давления в области между исходным и пониженным УГВ:

высота между исходным и пониженным уровнем воды

удельный вес воды

Как и в предыдущем расчёте давления, здесь тоже могут иметь место три опции положения уровней воды, т.е. три способа как получить высоту hd . Когда оба уровня расположены под поверхностью земли, то hd — это расстояние между исходным и пониженным уровнем воды. Когда исходный уровень воды находится над поверхностью земли, то высота hd пониженного уровня воды принимается только до уровня поверхности земли (см. разрез 1 на рис.). В последнем случае оба уровня могут находиться над поверхностью земли, т.е. разность уровней hd равна нулю (см. разрез 2 на рис.).

В третьем шагу определяем конечное значение порового давления u . Убыль давления Δu переумножаем на коэффициент редукции исходного порового давления X , который должен задаваться для каждого отдельного грунта в диалоговом окне в рамке «Грунты». В расчёт войдёт значение коэффициента X грунта на участке определения порового давления, т.е. в месте точки P (а не грунта, расположенного в области между исходным и пониженным УГВ). У водоприницаемого грунта равен X = 1, у практически неводопроницаемого X = 0. В расчёт принимается конечное значение порового давления:

исходное поровое давление

поправочный коэффициент исходного порового давления

убыль порового давления

4) Коэффициенты порового давления Ru

Коэффициент порового давления Ru показывает соотношение между поровым давлением и гидростатическим давлением в массиве грунта.

В области, где Ru имеет положительное значение, учитывается заданный удельный вес водонасыщенного грунта γsat , в обратном случае — удельный вес грунта γ .

Значения Ru задаём с помощью изолиний, соединяющих точки с одинаковым значениенм. Значения между изолиниямии подвергаем линейной интерполяции. Поровое давление рассчитываем как геостатическое напряжение, уменьшенное коэффициентом Ru :

коэффициент порового давления

высота i-ого слоя грунта

удельный вес i-ого слоя грунта

5) Значения порового давления

Грунтовые воды можно описать непосредственно с помощью значений порового давления в сечении массива грунта.

В области, где u имеет положительное значение, учитывается введенный удельный вес водонасыщенного грунта γsat , в обратном случае — удельный вес грунта γ .

Значения порового давления задаём с помощью изолиний, соединяющих точки с одинаковым значением порового давления. Значения между изолиниямии подвергаем линейной интерполяции. В расчёт вводим значения порового давления, считанные в конкретной точке сечения рельефа.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector