Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение общей устойчивости склонов откосов

Длительная устойчивость откосов, склонов и удерживающих конструкций

Длительная устойчивость откосов, склонов и удерживающих конструкций — Лекция, раздел Механика, Механика грунтов Грунты Являются Реологической Средой. Снижен.

Грунты являются реологической средой. Снижение прочности грунтов во времени приводит к постепенному уменьшению устойчивости массивов горных пород и оснований сооружений.

Известно много случаев, когда стоявшие незыблемо откосы и склоны, казалось бы, без видимых причин вдруг переходили в интенсивное движение и теряли устойчивость. История содержит много фактов катастрофических последствий оползней.

Деление склонов на устойчивые и неустойчивые условно. Устойчивый в настоящий момент времени склон может перейти в неустойчивое состояние в течение определенного времени.

Следует отметить, что наблюдаемое медленное движение оползневого склона не обязательно должно заканчиваться полной потерей устойчивости с переходом к катастрофической фазе. Подавляющее большинство склонов и откосов (до 90 %) многие десятилетия могут находиться в фазе глубинной ползучести, не переходя в катастрофическую фазу.

Это не означает, что такие склоны безопасны. Под воздействием медленно движущихся оползневых склонов и откосов деформируются и выходят из строя сооружения, возводимые на склонах: железные и автомобильные дороги, газопроводы, подпорные стены, опоры мостов и т. д. Характерным примером здесь может являться левобережный склон р. Москвы, служащий упором метромоста.

При оценке длительной устойчивости откосов и склонов возникают две проблемы. Первая – оценить устойчивость на заданный период времени, то есть произвести расчет по первой группе предельных состояний с учетом реологических свойств грунтов (длительная прочность и т. д.) и изменения других обстоятельств и ответить на вопрос, когда (или никогда) склон перейдет в неустойчивое состояние. Вторая – прогнозировать скорости и величины оползневых смещений на заданный период времени в соответствии с положениями расчетов по второй группе предельных состояний. Современное состояние науки и экспериментальной практики позволяет теоретически решать указанные выше проблемы.

Крайне важным в этой проблеме является тщательный анализ инженерно-геологической ситуации, опыт наблюдения за динамикой развития оползневых процессов в сходных геологических условиях региона. В ответственных случаях необходимо проводить натурные наблюдения и применять экстренные инженерные мероприятия по предотвращению потери устойчивости.

В качестве ограждающих конструкций на оползневых склонах, территориях набережных часто использовались подпорные стенки гравитационного типа. В последнее время все чаще применяют конструкции из буронабивных свай и столбов, заделанных в коренные породы.

Поскольку подпорные конструкции служат для поддержки в равновесии потенциально неустойчивых откосов грунтов, описанные выше реологические процессы могут проявиться в изменении условий взаимодействия подпорной конструкции и грунтового массива. Взаимодействие грунтов засыпки, медленно движущихся оползневых масс с ограждающими и противооползневыми конструкциями носит сложный пространственно-временной характер.

Известны примеры длительных смещений береговых устоев мостов, подпорных сооружений на авто- и железнодорожных магистралях, на гидротехнических объектах. Скорость смещений может быть разной от 5…6 мм в год в начале развития до 500 мм в год перед разрушением.

Количественная оценка этих процессов может быть выполнена с двух позиций. Первая — оценить длительную устойчивость ограждающей конструкции, взаимодействующей с нагружающим массивом (грунт засыпки, оползневое тело и т. д.), произведя расчет по первому предельному состоянию. Вторая — оценить величины смещений ограждающей конструкции, взаимодействующей с грунтовым массивом, то есть выполнить расчет по второму предельному состоянию.

Решением таких сложных задач занимаются специализированные организации.

Тема: «Расчет оснований по деформациям»

1 – Виды и природа деформаций грунта

2 – Общие сведения о методах расчета фундаментов мелкого заложения по второй группе предельных состояний (методы расчетов по деформациям)

3 — Расчет фундаментов мелкого заложения по второй группе предельных состояний методом послойного суммирования

Устойчивость откосов и склонов

Общие положения

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Рис. 1. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а) – расчетная схема; б) – определение положения наиболее опасной поверхности скольжения; 1, 2, … — номера элементов.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов (тогда и долгое время назывался методом шведского геотехнического общества).

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 1, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра . Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

, (1)

где и — моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

Для определения входящих в формулу (1) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т.д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

; (2)

Соответственно момент сил, вращающих отсек вокруг 0, определился как

(3)

где п – число элементов в отсеке.

Читать еще:  Журнал наблюдений за устойчивостью откосов

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

, (4)

где — длина дуги основания i-го элемента, определяемая как . Здесь — ширина элемента)

Отсюда момент сил, удерживающих отсек, будет иметь вид

. (5)

Учитывая формулу (1), окончательно получим

. (6)

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задавясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис.1,б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

Мероприятия по повышению устойчивости откосов и склонов.

Одним из наиболее эффективных способов повышения устойчивости откосов и склонов является их выполаживание или создание уступчатого профиля с образованием горизонтальных площадок (берм) по высоте откоса. Однако это всегда связано с увеличением объемов земляных работ. При относительно небольшой высоте откосов может оказаться эффективной пригрузка подошвы в его низовой части или устройство подпорной стенки, поддерживающей откос. Положительную роль также играют закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит.

Важнейшим мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывается устройством нагорных канав, отведением воды с берм. Подземные воды, высачивающиеся на поверхности откоса или склона, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости разрабатываются сложные конструктивные мероприятия типа прорезания потенциально неустойчивого массива грунтов системой забивных или набивных свай, вертикальных шахт и горизонтальных штолен, заполненных бетоном и входящих в подстилающие неподвижные части массива. Используется также анкерное закрепление неустойчивых объемов грунта, часто во взаимодействии с подпорными стенками или свайными конструкциями.

Устойчивость откосов и склонов

Устойчивость откосов и склонов

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

022.gif» /> составляющие к дуге скольжения в точке их приложения. Тогда

. (4.12)

Для их определения массив, выделенный поверхностью скольжения, разбивается на отдельные отсеки и вычисляется вес каждого отсека Qi. Если на поверхности данного отсека задана нагрузка, она также включается в Qi. Силы Qi считаются приложенными к основанию отсека и раскладываются на нормальную Ni и касательную Тi составляющие к дуге скольжения:

Моменты сил будут равны:

;

,

где — длина дуги в пределах каждого отсека.

Отношение моментов по (4.12) дает формулу коэффициента устойчивости:

. (4.13)

Смысл коэффициента устойчивости такой: при К > 1 откос устойчив; при К 1 должно выполняться для наименьшего коэффициента устойчивости, рассчитанного для опаснейшей поверхности скольжения. Они устанавливаются проведением серии расчетов для различных положений центра и значений радиуса R. Нормативные коэффициенты устойчивости (надежности) назначаются при проектировании больше единицы в пределах 1,2…1,5. Запас надежности необходим из-за приближенности расчетной схемы, неоднородности грунтов, неточности определения их характеристик и других факторов.

Устойчивость откосов и склонов

Устойчивость откосов и склонов

Общие положения

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Рис. 1. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а) – расчетная схема; б) – определение положения наиболее опасной поверхности скольжения; 1, 2, … — номера элементов.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов (тогда и долгое время назывался методом шведского геотехнического общества).

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 1, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра . Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

где и — моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

Для определения входящих в формулу (1) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т.д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

Соответственно момент сил, вращающих отсек вокруг 0, определился как

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

где — длина дуги основания i-го элемента, определяемая как . Здесь — ширина элемента)

Отсюда момент сил, удерживающих отсек, будет иметь вид

Учитывая формулу (1), окончательно получим

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задавясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис.1,б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

Мероприятия по повышению устойчивости откосов и склонов.

Одним из наиболее эффективных способов повышения устойчивости откосов и склонов является их выполаживание или создание уступчатого профиля с образованием горизонтальных площадок (берм) по высоте откоса. Однако это всегда связано с увеличением объемов земляных работ. При относительно небольшой высоте откосов может оказаться эффективной пригрузка подошвы в его низовой части или устройство подпорной стенки, поддерживающей откос. Положительную роль также играют закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит.

Важнейшим мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывается устройством нагорных канав, отведением воды с берм. Подземные воды, высачивающиеся на поверхности откоса или склона, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости разрабатываются сложные конструктивные мероприятия типа прорезания потенциально неустойчивого массива грунтов системой забивных или набивных свай, вертикальных шахт и горизонтальных штолен, заполненных бетоном и входящих в подстилающие неподвижные части массива. Используется также анкерное закрепление неустойчивых объемов грунта, часто во взаимодействии с подпорными стенками или свайными конструкциями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector