Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение формы равноустойчивого откоса

Определение формы равноустойчивого откоса

Прочность земляного полотна определяется в наиболее неблагоприятный период года — период весеннего оттаивания грунта. Продолжительность этого периода обычно невелика и не превышает 1-1.5 недели, поэтому очень важно оперативно выполнить работы в указанный период.

Оценка прочности дорожной одежды выполняется по упругому прогибу установкой динамического нагружения с падающим диском и жестким штампом. В процессе измерения к штампу прикладывают нагрузку несколькими ступенями, которые остаются неизменными до конца испытания. Обычно принимаются следующие ступени: 4,8, 12, 16,20,24 кН. Для каждой ступени вычисляют давление. Относительную упругую деформацию определяют по показаниям двух мессур (приборов для измерения линейных перемещений и деформаций). По данным измерений строят графики зависимости относительной деформации от давления подошвы штампа на грунт при нагружении и разгрузке. По этому графику находят значение расчётной относительной упругой деформации, а затем вычисляют модуль упругости грунта

(3.8)

где π/4 — поправочный коэффициент, учитывающий жёсткость штампа;

(3.9)

где Рнагр, Рразгр — давление штампа на грунт соответственно при нагружении и после разгрузки, Па; µ — коэффициент Пуассона для грунта; — относительная упругая деформация.

По этим данным строят линейный график прочности.

Прочность и устойчивость земляного полотна обеспечивается:

Ø — соблюдением проектных геометрических параметров;

Ø — обеспечением стока поверхностных вод и отводом влаги из-под конструкции дорожной одежды;

Ø — необходимым возвышением бровки земляного полотна над уровнем грунтовых и атмосферных вод;

Ø — возведением земляного полотна из устойчивых грунтов с послойным уплотнением до требуемого значения;

Ø — назначение оптимальной крутизны откосов насыпей и выемок с предохранением их поверхности от оползания, водной и ветровой эрозии.

Устойчивость склонов и откосов рассчитывают из условий плоской задачи: по прочности (1-е предельное состояние) и деформируемости (2-е предельное состояние).

Расчет устойчивости склонов и откосов по прочности сводится к определению коэффициента запаса устойчивости с помощью различных расчетных методов (метод круглоцилиндрической поверхности скольжения, метод горизонтальных сил Маслова-Берера, метод Шахунянца, метод наклонных сил Чугаева и др.), а также к сравнению его с требуемой величиной.

Расчетные характеристики грунтов (объемная масса, угол внутреннего трения и сцепление) следует принимать соответствующими наименее благоприятным условиям устойчивости оползневого склона в годовом и многолетнем циклах.

Геодезической основой расчетной схемы являются расчетные поперечники, характеризующиеся наиболее неблагоприятным сочетанием различных факторов, таких, как высота и крутизна склона, мощность смещающихся масс, расположение слабых прослоек, наклон слоев, уровень грунтовых вод и др.

Целью разработки проекта устройства насыпи был выбор технических решений наиболее рациональных с позиций экономических, технологических, экологических и временных, обеспечивающих надежную конструкцию земляного полотна.

Особенности при выполнении работ:

Выполнение работ по возведению насыпи требует особого внимания к контролю качества ведения работы и её результатов по каждому технологическому процессу и организации научного сопровождения хода строительства.

Своевременное регулирование технологии отсыпки и реакция на процесс и тенденции хода осадок и их стабилизации с регламентацией технологических перерывов.

Соблюдение указаний нормативных документов.

Порядок расчёта устойчивости откосов земляного полотна разработан в соответствии с «Указаниями по расчёту высоких насыпей и глубоких выемок автомобильных дорог».

Коэффициент запаса устойчивости откоса земляного полотна (табл.3.8)

(3.10)

где N — нормальная, по отношению к поверхности скольжения, составляющая веса вышележащего слоя грунта, м; L — длина дуги скольжения в пределах грунта насыпи и основания, м; T — касательная к дуге скольжения составляющая сила веса, т; Q — вес грунта в объёме отсека, т; — угол внутреннего трения грунта насыпи и основания.

Таблица 3.8 — Допускаемые значения коэффициента П

Песчаные грунты с постоянной влажностью

Глинистые грунты с постоянной влажностью и песчаные с переменной влажностью

Глинистые грунты с переменной влажностью

Коэффициент запаса устойчивости откосов оползневых участков после проведения противооползневых мероприятий принимается при расчете по прочности не менее 1,3. При учете сейсмического воздействия величина активных сдвигающих сил должна быть увеличена на сейсмический коэффициент =1,03-1,1. Если общая устойчивость склонов и откосов земляного полотна обеспечена ( =1,3), но есть опасность развития длительных деформаций ползучести во времени, необходимо дополнительно выполнять расчеты по деформируемости.

Устойчивость оползневых склонов по деформируемости особенно следует проверять в тех случаях, когда угол внутреннего трения грунтов, слагающих склон, незначителен, а структурное сцепление равно нулю (пластичные глинистые грунты и др.).

Если задаться значением запаса устойчивости ny , то, решив ее относительно h пр , можно найти значение проектной мощности оползня, обеспечивающей заданный запас устойчивости, по формуле:

(3.11)

где — объемный вес грунтов оползневой массы в элементарной призме; и — угол внутреннего трения и сцепление грунтов по поверхности скольжения оползня.

Коэффициент запаса устойчивости не дает возможности оценить количественно как надежность склона, так и степень риска. Это связано с тем, что в прогнозе коэффициента запаса не учитываются разбросы величин внешних сил, геометрических размеров, разброс физических характеристик грунта и т.д. Был принят нормальный закон распределения для всех расчетных величин коэффициента устойчивости и, используя функции Лапласа, установлена крутизна склона при заданной вероятности устойчивости склона

(3.12)

где Мсопр — момент сопротивления вращению объема грунта вокруг определенной точки; Мвращ— величина вращающего момента.

Формула показывает, что при коэффициенте запаса устойчивости вероятность обрушения П=0,5. Это означает, что каждый второй склон, запроектированный таким образом, может обрушиться, то есть риск оценивается в 50%.

Определение вида и центра критической дуги скольжения, при которой коэффициент запаса устойчивости будет минимальным, проводится методом последовательного приближения с повторением расчёта устойчивости для нескольких дуг с наименее выгодным соотношением удерживающих и сдвигающих сил. При назначении радиуса дуги скольжения следует учитывать, что критическая дуга обычно образует центральный угол 100-135º. Центр критической дуги скольжения отыскивается следующим образом.

Расчётная схема №1 (рис. 3.24). Центр «О» располагается на линии, проходящей через бровку откоса и точку «В», лежащую на глубине H и расстоянии 3 H от подошвы откоса. Для первого приближения центр критической дуги назначается на пересечении линии СВ и линией АО, проведённой под углом 25º к среднему откосу. При последующих этапах проверки центры О12 ,К намечается выше через (0,25-0,3) H .

Рис. 3.24 — Расчётная схема №1 — для дуг скольжения, проходящих через подошву откоса, кроме случаев, когда угол откоса

Расчётная схема №2 (рис. 3.25). Центр «О» располагается в зоне между вертикалью и нормалью, проведёнными из середины откоса «М». При первом приближении центр назначается на биссектрисе угла FMD на расстоянии Н от точки «М». На продолжении линии ОМ через 0,25 H откладываются центры дуг скольжения для проверочных расчётов. Повышение устойчивости откосов может производиться как путём уполаживания, так и путём устройства контрбанкетов, размер которых определяется величиной необходимой пригрузки внешнего края призмы обрушения.

Рис. 3.25. — Расчётная схема №2 для дуг скольжения, проходящих через основание и подошву откоса при

Алгоритм расчёта устойчивости откосов земляного полотна следующий:

1. Ввод глубины откоса H и радиуса дуги R

2. Расчёт по формуле:

и . (3.13)

3. Расчёт по формуле:

и . (3.14)

. (3.15)

В случае переход к п. 5, иначе переход к п. 6.

5. Определение равнодействующей веса грунта , переход к п.7

(3.16)

6. Определение равнодействующей веса грунта

.. (3.16)

7. Расчёт ординаты

, . (3.17)

8. Расчёт приближения

. (3.18)

9. При условии переход к п. 2, иначе к п.10.

10. Расчёт нормальной составляющей веса вышележащего слоя грунта

(3.19)

и касательной к дуге скольжения составляющей силы веса

Читать еще:  Что такое откосы гидросооружения

(3.20)

, , . (3.21)

, , . (3.22)

13. Расчёт коэффициента запаса устойчивости по формуле

(3.23)

Для повышения устойчивости основания насыпи против выпора или выдавливания могут применяться следующие конструктивные мероприятия:

Геотехнический расчет устойчивости склонов (откосов) в парке «Зарядье»

Какая задача стояла перед инженером?

Проект предусматривал возведение насыпей различной конфигурации для формирования уникального рельефа парковой зоны и обсыпки подземных объектов. Согласно СП116.13330.2012 требовалась оценка устойчивости склонов, формирующих рельеф.

Геологические условия

  • План организации рельефа. М1:500;
  • Технический отчет об инженерно-геологических условиях участка проектируемого строительства подземного паркинга;
  • Поперечные профили (сечения) склонов/откосов;
  • Паспорт на песок 1кл. сеяный для строительных работ.

Для расчетного анализа в программном комплексе геотехнических расчетов Plaxis 2D по методу конечных элементов выбраны сечения склонов 1-1, 2-2, 3-3, 4-4, 5-5.

Грунты и строительные материалы, присутствующие в расчетных моделях:

1) Техногенный грунт ИГЭ-1 (существующий);
2) Почва для посадок – суглинок легкий с содержанием гумуса до 10%;
3) Песок средней крупности.

1) Почва для посадок – суглинок легкий с содержанием гумуса до 10%;
2) Песок средней крупности;
3) Пеностекло ПСЩ 140 30/60;
4) Гранитный щебень фр.20-40.

1) Почва для посадок – суглинок легкий с содержанием гумуса до 10%;
2) Песок средней крупности;
3) Мелкий песок.

1) Почва для посадок – суглинок легкий с содержанием гумуса до 10%;
2) Песок средней крупности;
3) Мелкий песок.
4) Гранитный щебень фр.20-40;
5) Техногенный грунт ИГЭ-1 (существующий).

1) Почва для посадок – суглинок легкий с содержанием гумуса до 10%;
2) Песок средней крупности;
3) Мелкий песок.

Внутренние конструкции объекта по проекту обсыпаются (вне зоны промерзания) песками мелкими, с коэффициентом фильтрации после уплотнения не менее 1,5 м/сут и содержанием пылеватых и глиняных частиц не более 20%. Верхний слой насыпей (под растительным слоем – глубиной не менее 1,5м от планировочных отметок) и пазухи котлованов сооружений (подпорных стен и др.) – песком средней крупности с коэффициентом фильтрации после уплотнения не менее 3 м/сут и содержанием глиняных частиц не более 10%.

Таблица 1. Характеристики грунтов

Геотехнический расчет устойчивости насыпи

Численный анализ деформаций и устойчивости насыпи выполнен при помощи программного комплекса геотехнических расчетов PLAXІS 2D методом конечных элементов:

при создании геометрической модели грунтовый массив разбивается на сеть 15 узловых треугольных изопараметрических конечных элементов, в которых перемещения определяются во всех узлах, а напряжения (вычисляются по методу К.Терцаги) – в 12 точках.

Грунтовая модель – упругопластическая, Кулона-Мора, оценивается дренируемое/ недренируемое состояние грунтов. Коэффициент взаимодействия (трения, скольжения и т.п) материалов/интерфейсов – 0,6. Плитные конструкции – перекрытия и т.п. характеризуются продольной и изгибной жесткостью, моделируются 5-ти узловыми линейными элементами.

Учитывая, что проектом предусмотрено устройство дренажей глубокого заложения, уровень подземных вод при выполнении расчетов не рассматривался. По верху откоса для проверки критических условий работы сооружения принята нагрузка от толпы людей (10кН/м 2 , кроме сечения 5-5).

Геотехнический расчет устойчивости проведен методом снижения прочности (SRM – shear reduction method), который по принципу расчета схож с методом Р.Р. Чугаева, известном в гидротехническом строительстве. Метод снижения прочности реализован в программах, работающих на основе метода конечных элементов и конечных разностей (Plaxis, GEO5, Phase2, FLAC). Прогноз разрушения осуществляется путем одновременного понижения обоих показателей сдвиговой прочности (удельного сцепления с и угла внутреннего трения φ):
cr = с / К уст и φ r = φ / К уст , где Куст – коэффициент снижения прочности, соответствующий коэффициенту устойчивости в момент разрушения.

Требуемый коэффициент устойчивости согласно разделу 5 СП116.13330.2012 следует определять по формуле: Ктр= γн ∙ ψ / γ ­ d, где γн — коэффициент надежности по назначению сооружения – повышенный (класс сооружения КС-3), ввиду уникальности объекта строительства (п.10 ГОСТ 27751-2014), минимальное значение γн = 1,1; ψ – коэффициент сочетания нагрузок, ψ = 1,0; γ ­ d – коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов со временем, степень точности исходных данных, приближенность расчетных схем, тип сооружения, конструкции или основания, вид материала и другие факторы, устанавливается в диапазоне 0,75 ≤ γ ­ d ≤1,00. Принят практически минимальным, γ ­ d = 0,8, исходя из степени точности исходных данных и уникальному типу сооружения.

Таким образом, Ктр = 1,1 ∙ 1 / 0,8 = 1,38

Устойчивость откосов и давление грунтов на ограждения и подпорные стены

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

9.4. Расчет устойчивости откосов с использованием

строгих решений теории предельного равновесия

На основе системы уравнений теории предельного равновесия (9.23) задачи об устойчивости откосов можно решать без принятия предварительных предположений о форме поверхностей скольжения. Для некоторых частных случаев имеются замкнутые аналитические решения, но основные результаты получены численным интегрированием уравнений (9.23) с построением сеток линий скольжения.

В практике проектирования чаще всего рассматриваются задачи двух типов:

1. Задано очертание откоса и характеристики грунта . Требуется определить интенсивность нагрузки на поверхности, при которой массив грунта будет находиться в предельном равновесии.

2. Задана интенсивность нагрузки на верхней горизонтальной поверхности грунта. Требуется определить такое очертание поверхности откоса, при котором ограниченный им массив грунта находится в предельном равновесии. Это задача об очертании равноустойчивого откоса.

Расчетная схема к задаче первого типа представлена на рис.9.9.

Рис.9.9 — Схема определения предельного давления

при заданном очертании откоса

Решение задачи в безразмерных коэффициентах имеет вид:

, (9.20)

где и — безразмерная координата и давление.

Значения в зависимости от при соответствующих принимаются по табл.9.1.

Расчеты по формуле (9.20) проводят следующим образом. Для заданных на горизонтальной поверхности точек с координатой рассчитывают безразмерные координаты . Далее по табл.9.1 при известных и определяют значения . Затем по (9.20) рассчитывают для принятых точек значения ординат эпюры предельного давления .

Для решения второй задачи используют графики в безразмерных координатах . Кривые на графике (рис.9.10) показывают очертание равноустойчивого откоса при данном значении . Здесь ; и — действительные координаты соответствующих точек откоса при задании начала координат в точке .

Таблица 9.1 — Значения в формуле (9.20)

Значения при , равном

при , равном

Построение равноустойчивого откоса проводят в следующей последовательности. На рис.9.10 выбирается кривая для заданного значения . Начало координат располагается на верхней границе откоса. Задаются положением нескольких точек кривой и по безразмерным их координатам при известных вычисляют действительные координаты

.

Кривая, проведенная через точки с этими координатами, будет давать очертание равноустойчивого откоса при известных исходных данных.

Построенный таким образом откос может нести на горизонтальной поверхности равномерно распределенную нагрузку , эквивалентную слою грунта высотой по (9.13), (9.14):

. (9.21)

При отсутствии нагрузки верхняя часть откоса на высоту может иметь вертикальное положение. В этом случае построенную кривую следует опустить по оси так, чтобы она выходила из точки (). Соответственно равноустойчивый откос будет заканчиваться в верхней части вертикальным уступом.

Если в рассмотренных задачах требуется определить нагрузку на поверхности или очертание откоса с заданным коэффициентом устойчивости (в частности, нормативным), в приведенных выше вычислениях следует использовать прочностные характеристики, определенные по формулам (9.22)

. (9.22)

9.5. Условия применения различных методов расчета

и мероприятия для повышения устойчивости

откосов и склонов

Изложенное выше показывает, что основными в методах расчета устойчивости откосов являются: 1) принятие наиболее вероятной формы разрушения откоса и соответствующей поверхности скольжения и 2) учет по ней действительных для принимаемой предельной ситуации прочностных характеристик грунтов.

Читать еще:  Расстилка дорнита по откосу

Сложность первого условия и соответствующей задачи состоит в том, что чаще всего ее приходится решать без детального анализа напряженно-деформированного состояния откоса и его изменения во времени. Это задача прогноза и ее успех определяется правильной оценкой вероятных изменений условий существования откоса в течение длительного периода и возникающих при этом опасностей.

Причины потери устойчивости многообразны. Основными из них являются:

подрезка склона, уже находящегося в близком к предельному состоянию;

устройство чрезмерно крутого склона;

увеличение внешней нагрузки на откос из-за возведения сооружений, складирования материалов на откосе или вблизи его бровки;

изменение удельного веса грунтов – увеличение при дополнительном увлажнении или, наоборот, снижение из-за взвешивающего действия воды;

ошибки при назначении расчетных характеристик прочности грунтов;

снижение сопротивления грунтов сдвигу за счет переувлажнения или других причин;

проявление гидродинамического давления фильтрующей воды, развитие суфорозионных явлений;

динамические воздействия (вибрации, сотрясения, удары) при движении транспорта, забивные сваи и др.;

Часто нарушение устойчивости является результатом нескольких причин, т.е. связано с взаимодействием ряда факторов. Их прогноз возможен только на основе тщательного анализа всего комплекса инженерно-геологических условий.

Сложное положение также зависит от решения второй задачи – назначения расчетных значений прочностных характеристик. Часто грунт даже во внешне однородном слое обладает прочностной анизотропией, т.е. неодинаковостью показателей прочности по различным направлениям. Для таких условий ясно, что результаты испытаний в обычном срезном приборе образцов, отобранных вдоль линии скольжения, вырезанных из монолитов по высоте сверху вниз, будут искажены влиянием анизотропии (рис.9.11). В то же время при инженерно-геологических изысканиях положение поверхности скольжения заранее неизвестно. Этот, а также другие факторы должны учитываться при выборе расчетных прочностных характеристик.

Рис.9.11 — Влияние анизотропии грунта на сопротивление сдвигу

Большое значение имеет использование рассмотренных выше методов расчета для количественной оценки влияния различных факторов на коэффициент устойчивости. Нейтрализация опасных факторов достигается специальными мероприятиями по повышению устойчивости. Наиболее эффективно выполаживание откосов (склонов) или создание горизонтальных площадок (берм) по их высоте. Однако это связано с увеличением объема земляных работ, а также может оказаться неприемлемым по условиям планировки территории.

Эффективными могут быть закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит. Возможны пригрузка подошвы в низовой части откоса или устройство подпорной стенки, поддерживающей откос.

Важным мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывают нагорными канавами; вода отводится также с берм. Подземные воды, высачивающиеся на поверхности откоса, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости проводятся сложные конструктивные мероприятия. Например, применяется прорезка потенциально неустойчивого массива грунтов системой свай, вертикальных шахт и горизонтальных штолен, заполняемых бетоном и заглубленных в подстилающие неподвижные части массива. Используются также армирование и анкерное крепление неустойчивых объемов грунта, часто в сочетании с подпорными стенками или свайными конструкциями.

Изучение вопроса повышения устойчивости откосов дорожных насыпей с использованием геосинтетических материалов

Рубрика: Технические науки

Дата публикации: 10.04.2017 2017-04-10

Статья просмотрена: 362 раза

Библиографическое описание:

Гайлитис, Д. И. Изучение вопроса повышения устойчивости откосов дорожных насыпей с использованием геосинтетических материалов / Д. И. Гайлитис, С. О. Полозуко, Е. И. Воронин. — Текст : непосредственный // Молодой ученый. — 2017. — № 14 (148). — С. 53-56. — URL: https://moluch.ru/archive/148/41844/ (дата обращения: 22.09.2021).

Ключевые слова: дорожные насыпи, устойчивость откосов, геосинтетические материалы

Известно, что на дорогах, проложенных на участках с пересеченным рельефом, могут возникать различные деформации откосов. Это может происходить из-за выклинивания грунтовых вод, чрезмерной крутизны откосов, применения неустойчивых грунтов для возведения насыпей. Для расчета устойчивости насыпи учитывается несколько факторов: крутизна откоса, особенности грунтов, цели укрепления откоса. На этом этапе появляется необходимость инженерных расчетов и геологических изысканий. Однако, сегодня имеются материалы и конструкции, используемые для откосов разной крутизны. К ним и относятся геосинтетики.

При недостаточной устойчивости откосов насыпи повысить устойчивость можно, используя жесткие плоские геоткани, георешетки или объемные материалы, имеющие коэффициент относительного удлинения при разрыве не более 10–15 %. Применение геосинтетических материалов для повышения устойчивости откосов насыпи основано на совместной работе прослойки и грунта в зоне оползания откоса. Назначение армирующих прослоек заключается в повышении сдвиговой прочности толщи грунта.

Кроме того, геосинтетические материалы обладают высокой долговечностью и устойчивостью к агрессивным воздействиям.

Проведя анализ характеристик геосинтетических материалов как зарубежного, так и отечественного производства, следует выделить несколько наиболее интересных материалов, которые можно рекомендовать для повышения устойчивости откосов насыпей в дорожном строительстве.

Достаточно широкое распространение на сегодняшний день получают сооружения из армированного грунта, которые представляют собой искусственное сооружение, выполненное посредством послойного армирования грунта насыпи геосинтетическими материалами, в частности — одноосно ориентированными георешетками. Эффект армирования в данном случае состоит в неодинаковом ограничении геосинтетическим материалом нормальной деформации в разных направлениях.

Технология применения геосинтетики менее трудоемка, по сравнению с сооружением стен из бетона. Она позволяет существенно увеличивать ставку экономической выгоды, по сравнению с использованием традиционных технологий, предполагающих возведение бетонных подпорных стен, шпунтовых ограждений или даже замену грунта при выполнении строительных работ на площадках со слабым неустойчивым основанием.

Геотекстиль Стабилекс (геоткань) — относится к разделу геосинтетиков и представляет собой тканое полотно из высокопрочных полиамидных нитей. Применяется для строительства насыпей повышенной крутизны из сыпучих материалов возведения подпорных стен.

Аналогичный геоматериалу Стабилекс материал Геоспан ТН — тканый геотекстиль, изготавливаемый из прочных полипропиленовых нитей, что обуславливает применение материала для армирования грунтов и повышения их устойчивости в откосах.

Тканая структура Геоспана ТН обеспечивает высокие показатели прочности на разрыв в продольном и поперечном направлении, а также низкую деформативность. Геоспан ТН повышает прочность грунтов за счёт увеличения несущей способности; улучшения сопротивления колееобразованию; предотвращения неравномерных просадок.

Нотекс (NOTEX®GX) — универсальная усилительная геосетка, разработанная для всех способов армирования любых типов грунта. Изготовлена по инновационной технологии из полиэфирных или полипропиленовых нитей, обладает высокой прочностью при малых деформация. Гибкая, устойчивая георешетка Notex GX может быть применена для укрепления насыпей и откосов, стен и опор, а также несущих конструкций.

Рис. 1. Внешний вид геосетки Нотекс (NOTEX®GX)

Также наряду с геотканями можно применять георешетки, которые прекрасно зарекомендовали себя в дорожном строительстве. В частности, их применяют для объемного армирования грунта. Главным параметром георешетки считается высота ребра, которая колеблется от 50 до 200 мм, и размер ячеек — 160–320 мм. Эти параметры подбирают в зависимости от крутизны склона и типа насыпного материала. Объемная георешетка выпускается в двух вариантах: изделие с перфорацией и без нее. Перфорация обеспечивает лучший дренаж и применяется для укрепления крутых склонов. Неперфорированным материалом армируют основания [3].

Среди отечественных геосинтетических материалов можно выделить георешетку «Славрос СО». Она является эффективным видом армирования как несвязных, так и связных грунтов. Армирование грунта георешетками, ориентированными одноосно, используется для увеличения сопротивлению сдвигу связного грунта в условиях как кратковременного, так и длительного нагружения.

Рис. 2. Внешний вид георешетки «Славрос СО»

В основу работы георешетки положено свойство поверхности геоматериала фиксировать верхние слои грунта. Георешетка вместе с наполнителем создает армирующий слой, который препятствует деформации грунта. Как утверждает производитель, георешетка «Славрос СО» хорошо работает во всех климатических зонах и на любых грунтах.

При расположении в грунте в пределах сектора растягивающих деформаций армирование нарушает однородный характер деформаций, который существовал бы при отсутствии арматуры, и препятствует образованию в грунте непрерывных поверхностей обрушения, в результате чего грунт приобретает повышенную жесткость и прочность на сдвиг. По мере того, как грунт деформируется, в нем мобилизуется сопротивление сдвигающим нагрузкам, а деформации грунта вызывают деформацию арматуры, что приводит к дальнейшему возрастанию прочности армированного грунта.

Читать еще:  Неровные откосы входной двери

Георешетка — геосинтетик, представляющий собой гибкий компактный модуль, состоящий из скрепленных между собой пластиковых лент, образующих в растянутом положении пространственную ячеистую конструкцию с заданными геометрическими сочетаниями и размерами. Материал для изготовления георешеток долговечен, не токсичен и экологически безопасен. Совокупность этих факторов обуславливает технологический эффект использования георешетки.

В зависимости от условий строительства укрепление с применением георешеток может быть как однослойным с горизонтальной прослойкой из геотекстиля, так и многослойным, обеспечивающим равномерное армирование всего массива земляной насыпи.

Георешетка T-TRACK — современный геосинтетический материал основой которого является полиэстер. К основным достоинствам можно отнести свойство сопротивляться высоким динамическим нагрузкам и устойчивость к механическим повреждениям. Это представляет этому материалу широкую сферу применения.

Композитные решетки ПараГрид TM представляют собой плоскую двуосную структуру, состоящую из совокупности композитных синтетических лент. Каждая отдельная лента имеет ядро, изготовленное из высокопрочных полиэфирных нитей заключенных в стабилизированную карбоном полиэтиленовую оболочку.

Еще один современный материал для армирования грунтов откоса — геосетка Триакс. Это трехосная сетка из полипропилена. Она состоит из правильных шестиугольников, образованных растяжением в двух направлениях при температуре более 120 градусов. При таком способе производства молекулы материала вытягиваются и упорядочиваются, тем самым возникают достаточно прочные связи и увеличивается прочность конечного продукта.

Рис. 3. Внешний вид геосетки Триакс

Правительственные программы по развитию дорожно-транспортного строительства интегрируют в культуру потребления современных материалов и технологий. Подрядные организации уже сегодня активно применяют геосинтетические материалы. Эти материалы позволяют увеличить срок службы дорог, а также повысить безопасность движения.

Таким образом, можно сделать вывод, что использование в земляном полотне геосеток или георешеток предотвращает вымывание грунта, повышает устойчивость откосов против оползания и может использоваться даже для армирования склонов большой высоты.

  1. ГОСТ Р 53225–2008 Материалы геотекстильные. Термины и определения. М: Стандартинформ, 2009. -11 с. 3. ГОСТ 33068–2014 Материалы геосинтетические для дренажных систем. Общие технические требования. М: Стандартинформ, 2014–52 с
  2. ГОСТ 33068–2014 Материалы геосинтетические для дренажных систем. Общие технические требования. М: Стандартинформ, 2014–52 с
  3. Львович Ю. М. Тенденции, пути развития и опыт применения геосинтетических материалов в дорожном строительстве // Применение геоматериалов при строительстве и реконструкции транспортных объектов: Материалы 2-й Междунар. науч.-техн. конф. — Санкт-Петербург, 2002. — 23 с.

ОТКОС 2.1

В программе ОТКОС решаются задачи анализа устойчивости земляного полотна при проектировании оснований зданий и сооружений, а также автомобильных дорог.

С программой поставляется начальная база из песчаных и пылевато-глинистых грунтов, которую можно дополнять новыми грунтами и уточнять их физико-механические характеристики.

ФОРМИРОВАНИЕ И КОРРЕКТИРОВКА БАЗЫ ДАННЫХ ПО ГРУНТАМ

Метод определения параметров добавляемого грунта устанавливается в соответствии с полнотой исходных данных и в зависимости от способа их получения.

  • По лабораторным испытаниям – расчетные параметры грунтов принимаются на основе статистической обработки результатов лабораторных испытаний. Метод рекомендуется при обследовании существующих насыпей и выемок. Это самый надежный метод, например, для реконструкции или для детального проектирования земляного полотна в сложных грунтово-геологических условиях.

При создании грунта пользователя по лабораторным испытаниям реализована возможность задания всех физико–механических характеристик грунта без перерасчета. Поля параметров доступны для редактирования.

  • Минимум данных – расчетные параметры прочности грунтов принимаются по литературным и справочным источникам. Метод рекомендуется для предварительных оценок устойчивости откосов выемок и насыпей при недостаточности данных.

Добавленные грунты можно экспортировать в отдельный файл, для последующего использования в других проектах.

ИСХОДНЫЕ ДАННЫЕ

Исходными данными для выполнения задачи по оценке устойчивости земляного полотна служат:

  • общие данные по объекту;
  • данные по конструкции и грунтам земляного полотна;
  • данные по грунтам основания.

Рис. 1. Диалог для ввода исходных данных

ОСНОВНЫЕ ФУНКЦИИ

В программе ОТКОС решаются задачи механики грунтов и выполняются расчеты устойчивости откосов, в том числе:

  • Расчет толщины эквивалентного слоя грунта по ГОСТ Р 52748-2007 (от нормативной нагрузки НК).

Рис. 2. Выбор варианта внешней нагрузки

Толщина эквивалентного слоя грунта Нэ, м при расчете устойчивости откосов насыпи от нагрузки транспортных средств (от нормативной нагрузки НК) вычисляют по формуле ГОСТ Р 52748-2007 п. 5.2.2 :

где K – класс нагрузки НК, кН,
D – база нагрузки НК, м,
С – ширина нагрузки НК, м,
γ_гр – удельный вес грунта, кН/м3.

  • Расчет толщины эквивалентного слоя по классическому методу (с учетом различных методических рекомендаций, пособий и др. нормативных документов).
  • Задание пользователем толщины эквивалентного слоя.
  • Поиск опасной кривой скольжения методом покоординатного спуска.
  • Расчет устойчивости земляного полотна по модифицированному методу Терцаги для каждой кривой скольжения, в том числе:
  • разбивка оползающего массива на блоки,
  • расчет площади и веса блоков с учетом параметров каждого слоя земляного полотна в каждом блоке,
  • расчет сдвигающих сил, сил трения и сцепления в каждом блоке,
  • расчет сдвигающих и удерживающих моментов.
  • Расчет устойчивости насыпи, в т.ч. насыпи на слабом основании с использованием армирующих прослоек из геосинтетических материалов по расчетным схемам и формулам в соответствии с ОДМ 218.5.003-2010 «Рекомендации по применению геосинтетических материалов при строительстве и ремонте автомобильных дорог. Федеральное дорожное агентство (РОСАВТОДОР), Москва 2010». В зависимости от местоположения геосинтетических материалов выполняются расчеты в соответствии с разделами:
  • для армоэлементов на слабом основании при расчете дефицита удерживающих сил на уровне основания – Раздел 8.
  • Для армоэлементов в насыпи – Раздел 11.
  • Применение геосинтетических материалов для обеспечения устойчивости на откосах — Раздел 8 п.б «Назначение конструктивных решений».

Рис. 3. Выбор геосинтетического материала в зависимости от его местоположения

  • Расчет параметров равноустойчивого откоса по методу Н.Н. Маслова;
  • Расчет устойчивости подтопленной насыпи.
  • Расчет с учетом сейсмического воздействия.
  • Расчет местной устойчивости откосов земляного полотна.

РЕЗУЛЬТАТЫ

По результатам расчетов в программе можно создать чертеж с отображением всей схемы конструкции откоса или отдельных фрагментов этой схемы (рис. 4).

Рис. 4. Схема конструкции откоса насыпи

Результаты расчетов могут быть представлены также в виде отчетов, состав которых уточняется пользователем

Рис. 5. Настройка состава отчета

При этом в отчет попадают данные по внешней нагрузке, данные по армированию насыпи и основания, данные по геосинтетическим материалам.

Системно-технические требования

Процессор: Intel Pentium 4 1.6 ГГц или совместимый (рекомендуется Intel Core 2 Duo 2,4 ГГц).

ОЗУ: не менее 512 МБ (рекомендуется 2 ГБ ).

Видеоподсистема: графический ускоритель на базе графического процессора класса NVIDIA GeForce2 MX или ATI Radeon 64, объем видеопамяти 64 МБ (рекомендуется 128 МБ).

Операционная система:

Microsoft Windows 7 Service Pack 1,

Microsoft Windows 7 64-bit edition Service Pack 1,

Microsoft Windows 8.1,

Microsoft Windows 8.1 x64,

Microsoft Windows 10 x64,

Microsoft Windows 10 x86.

Для обеспечения функционирования программного продукта требуется Система защиты Эшелон II, включающая аппаратный ключ защиты USB. Аппаратный ключ защиты может быть установлен как на том же компьютере, где запускаются приложения, так и на одном из компьютеров сети организации. Системно-технические требования для Менеджера защиты Эшелон II находятся здесь.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector