Npdpk.ru

Стройжурнал НПДПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент запаса для откоса

Н.В. Крупина Расчет устойчивости откосов методами равноустойчивогооткоса Fp, КЦПС и ППС

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра автомобильных дорог

РАСЧЕТ УСТОЙЧИВОСТИ ОТКОСОВ МЕТОДАМИ РАВНОУСТОЙЧИВОГО ОТКОСА F p , КЦПС И ППС

Методические указания по выполнению курсовой работы по дисциплине «Устойчивость откосов, основания и фундаменты» для студентов специальности «Автомобильные дороги и аэродромы» 29100 дневной формы обучения

Составители Н.В.Крупина А.И. Столярчук

Утверждены на заседании кафедры

Протокол № 4 от 5.02.99 Рекомендованы к печати учебно-методической комиссией

по специальности 291000 Протокол № 4 от 5.02.99

Электронная копия находится в библиотеке главного корпуса КузГТУ

Массив грунта, ограниченный наклонной поверхностью, называется откосом. Откосы могут быть естественными (природными) и искусственными, образованными в результате инженерной деятельности человека.

При проектировании различных объектов вблизи естественного откоса или земляного сооружения, включающего откос, необходимо произвести расчет устойчивости этого откоса, т.к. потеря устойчивости выемки или насыпи автомобильной дороги может на длительное время вывести автомобильную дорогу из эксплуатации, прервать сообщение между населенными пунктами. Восстановление автомобильной дороги требует привлечение больших дополнительных финансовых и людских трудозатрат. Поэтому расчет устойчивости откосов является одним из важных вопросов при проектировании автомобильных дорог.

Каждому студенту предлагается согласно своего варианта, указанного в задании, выбрать по инженерно-геологической карте (прил. 1) и таблице (прил. 2) свой геологический разрез, направление рассчитываемого борта и глубину выемки. Геологический разрез представлен в плоскости, перпендикулярной проектируемому откосу, расположенному в его геометрическом центре. Вид и мощность слоев грунта, а также уровень грунтовых вод по скважинам определяют по таблице прил.3. В таблице прил. 4 даны физико-механические характеристики грунта.

СОДЕРЖАНИЕ КУРСОВОЙ РАБОТЫ

Курсовая работа состоит из расчетно-пояснительной записки с необходимыми таблицами, схемами и графиками объемом 25-30 страниц и одного листа форматом А1, на котором расположены: геологический разрез, чертежи откосов методами F р , КЦПС, ППС (без учета и с учетом воздействия воды).

Расчетно-пояснительная записка должна содержать:

— -бланк задания на проектирование с необходимыми исходными данными;

— оценку инженерно-геологических условий;

— метод расчета равноустойчивого откоса F р ;

— метод круглоцилиндрических поверхностей скольжения (КЦПС);

— метод плоских поверхностей скольжения (ППС);

— список использованной литературы

Графическая часть курсовой работы должна содержать:

— инженерно-геологический разрез (М 1:50; 1:100; 1:200), горизонтальный и вертикальный масштабы могут быть различными;

— схемы для расчета устойчивости откоса (методами F р , КЦПС, ППС) с учетом и без учета воздействия воды.

ОЦЕНКА ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЙ

При оценке инженерно-геологических условий строительной площадки студент на основании полученных исходных данных должен осветить в пояснительной записке:

1) географическое положение площадки;

2) геологическую характеристику площадки (описание грунтов в порядке их залегания сверху вниз, мощность слоев и особенности их залегания);

3) гидрогеологические условия строительной площадки (наличие и уровень грунтовых вод);

4) показатели физико-механических свойств грунтов для каждого слоя, средние значения физико-механических свойств основных грунтов, слагающих откос, заносят студенты в табл. 1

Рекомендации по р асчёту устойчивости откосов земляного полотна

РЕКОМЕНДАЦИИ ПО Р АСЧЁТУ УСТОЙЧИВОСТИ ОТКОСОВ ЗЕМЛЯНОГО ПОЛОТНА

Кондрашова Е.В., Скворцова Т.В. (ВГЛТА, г. Воронеж, РФ)

In given article recommendations about calculation of stability of slopes of an earthen cloth are presented. Calculation of stability of slopes and slopes on durability is reduced to definition of factor of a stock of stability.

Земляное полотно – один из основных элементов автомобильной дороги, от устойчивости, прочности и долговечности которого зависит работоспособность дорожных одежд и всего сооружения.

Геодезической основой расчетной схемы являются расчетные поперечники, характеризующиеся наиболее неблагоприятным сочетанием различных факторов, таких, как высота и крутизна склона, мощность смещающихся масс, расположение слабых прослоек, наклон слоев, уровень грунтовых вод и др.

Устойчивость склонов и откосов рассчитывают из условий плоской задачи:

по прочности (1-е предельное состояние);

деформируемости (2-е предельное состояние).

Расчет устойчивости склонов и откосов по прочности сводится к определению коэффициента запаса устойчивости с помощью различных расчетных методов (метод круглоцилиндрической поверхности скольжения, метод горизонтальных сил Маслова-Берера, метод Шахунянца, метод наклонных сил Чугаева и др.), а также к сравнению его с требуемой величиной.

Расчетные характеристики грунтов (объемная масса, угол внутреннего трения и сцепление) следует принимать соответствующими наименее благоприятным условиям устойчивости оползневого склона в годовом и многолетнем циклах.

Целью разработки проекта устройства насыпи был выбор технических решений наиболее рациональных с позиций экономических, технологических, экологических и временных, обеспечивающих надежную конструкцию земляного полотна [1,2].

Особенности при выполнении работ:

Выполнение работ по возведению насыпи требует особого внимания к контролю качества ведения работы и её результатов по каждому технологическому процессу и организации научного сопровождения хода строительства.

Своевременное регулирование технологии отсыпки и реакция на процесс и тенденции хода осадок и их стабилизации с регламентацией технологических перерывов.

Соблюдение указаний нормативных документов.

Порядок расчёта устойчивости откосов земляного полотна разработан в соответствии с «Указаниями по расчёту высоких насыпей и глубоких выемок автомобильных дорог».

Коэффициент запаса устойчивости откоса земляного полотна

где — нормальная, по отношению к поверхности скольжения, составляющая веса вышележащего слоя грунта, м;

— длина дуги скольжения в пределах грунта насыпи и основания, м;

— касательная к дуге скольжения составляющая сила веса, т;

— вес грунта в объёме отсека, т;

Читать еще:  Коэффициент крутизны откоса для глины

— угол внутреннего трения грунта насыпи и основания.

Таблица 1 – Допускаемые значения коэффициента П

Песчаные грунты с постоянной влажностью

Глинистые грунты с постоянной влажностью и песчаные с переменной влажностью

Глинистые грунты с переменной влажностью

Коэффициент запаса устойчивости откосов оползневых участков после проведения противооползневых мероприятий принимается при расчете по прочности не менее 1,3. При учете сейсмического воздействия величина активных сдвигающих сил должна быть увеличена на сейсмический коэффициент К с =1,031,1. Если общая устойчивость склонов и откосов земляного полотна обеспечена ( К зап =1,3), но есть опасность развития длительных деформаций ползучести во времени, необходимо дополнительно выполнять расчеты по деформируемости.

Устойчивость оползневых склонов по деформируемости особенно следует проверять в тех случаях, когда угол внутреннего трения грунтов, слагающих склон, незначителен, а структурное сцепление С с равно нулю (пластичные глинистые грунты и др.).

Если в формуле (2) задаться значением запаса устойчивости п у , то, решив ее относительно h , можно найти значение проектной мощности оползня, обеспечивающей заданный запас устойчивости, по формуле

где γ — объемный вес грунтов оползневой массы в элементарной призме;

φ’ и С’ — угол внутреннего трения и сцепление грунтов по поверхности скольжения оползня.

Определение вида и центра критической дуги скольжения, при которой коэффициент запаса устойчивости будет минимальным, проводится методом последовательного приближения с повторением расчёта устойчивости для нескольких дуг с наименее выгодным соотношением удерживающих и сдвигающих сил. При назначении радиуса дуги скольжения следует учитывать, что критическая дуга обычно образует центральный угол 100-135º. Центр критической дуги скольжения отыскивается следующим образом [3].

Расчётная схема №1 (рис. 1). Центр «О» располагается на линии, проходящей через бровку откоса и точку «В», лежащую на глубине Н и расстоянии 3Н от подошвы откоса. Для первого приближения центр критической дуги назначается на пересечении линии СВ и линией АО, проведённой под углом 25º к среднему откосу. При последующих этапах проверки центры О 1 ,О 2 . намечается выше через (0,25-0,3)Н.

Рис. 1 Расчётная схема №1 – для дуг скольжения, проходящих через подошву откоса, кроме случаев, когда угол откоса и .

Рис. 2 Расчётная схема №2 для дуг скольжения, проходящих через основание откоса и дуг, проходящих через подошву откоса при

Задача № 4. Оценка степени устойчивости откоса методом круглоцилиндрических поверхностей скольжения (КЦПС)

Анализ устойчивости массивов грунта имеет большое практическое значение при проектировании земляных сооружений: насыпей, выемок, дамб; при оценке устойчивости естественных склонов.

Устойчивость откосов зависит от:

— прочности грунтов, слагающий откос и в его основании (параметров сопротивления грунтов сдвигу φ; с);

— нагрузок на поверхности откоса;

— фильтрация воды через откос.

Главнейшие причины нарушения устойчивости земляных масс: 1 – эрозионные процессы; 2 – нарушение равновесия.

Эрозионные процессы протекают весьма медленно и обычно не рассматриваются в механике грунтов.

Нарушение равновесия массивов грунта может происходить внезапно, со сползанием значительных масс грунта – такие нарушения равновесия называются оползнями. Этот вид нарушений равновесия является наиболее частым.

Возможными причинами нарушения устойчивости откосов являются:

— излишняя его крутизна;

— подрезка откоса в нижней части;

— утяжеление откоса вследствие увлажнения грунта;

— уменьшение параметров сопротивления сдвигу грунта тела откоса вследствие увлажнения, промерзания и оттаивания и других факторов;

— нагрузка на гребень откоса;

Метод круглоцилиндрических поверхностей скольжения широко применяется на практике для оценки устойчивости откосов насыпей и естественных склонов и является наиболее распространенным из методов расчета. Метод основывается на опытных данных о форме поверхностей скольжения при оползнях вращения, при этом самое невыгодное их положение определяется расчетом.

Задача расчета заключается в определении коэффициента устойчивости природного склона или откоса насыпи для наиболее опасной поверхности скольжения.

При крутизне откоса больше предельной происходит обрушение его части по поверхности, которую без большой погрешности можно принять за круглоцилиндрическую с радиусом R (рис.4.1).

Считая задачу плоской, толщина расчетного откоса по направлению его протяженности принимается 1 м. На плоскости чертежа след поверхности скольжения имеет вид части окружности радиуса R с центром в точке О.

Степень устойчивости откоса оценивается по величине коэффициента, представляющего собой отношение суммы моментов сил (относительно центра в точке О), удерживающих призму обрушения в устойчивом состоянии – Муд, к сумме моментов сил, вызывающих потерю устойчивости призмы обрушения – Мвр:

Для обеспечения устойчивости склона или откоса необходимо, чтобы коэффициент запаса устойчивости Кзап был больше 1.

В зависимости от класса ответственности сооружения требуемая величина коэффициента запаса устойчивости Кзап=1,25 – 1,80 и регламентируется соответствующими типу и классу сооружения нормами (СНиП).

Решение задачи осложняется неопределенностью положения центра вращения Омин для которого значение коэффициента запаса Кзап будет иметь минимальное значение из всех возможных значений.

Для облегчения определения расположения центра Омин предложен ряд приемов. Наименее трудоемким для однородных откосов является способ определения координат положения центра Омин по графику норвежского ученого Ямбу (рис. 4.2).

В данном способе по углу наклона откосной линии к горизонту β и обобщенному показателю λ=γ1Htgφ/c

Определяют относительные координаты хо и уо центра вращения Омин. Абсолютные координаты центра вращения при этом равны:

Точку начала координат помещают в точку пересечения линии откоса с горизонтальной линией основания. Ось абсцисс (ось х) с положительными значениями х направляют вправо о начала координат, ось ординат (ось у) – вертикально вверх.

Читать еще:  Как можно отделать откосы балкона

Радиус R поверхности скольжения определяется по расстоянию от центра вращения Омин до точки пересечения нижнего горизонта откоса и откосной линии (начала координат) (рис.4.2).

Радиусом R из точки О проводят в пределах тела откоса часть круглоцилиндрической поверхности скольжения, определяющей очертание потенциально опасной призмы обрушения.

Для определения коэффициента запаса устойчивости призма обрушения разбивается на ряд блоков с соблюдением ряда правил:

— поверхность скольжения в пределах одного блока должна находиться в грунте одного типа и состояния;

— вертикальные границы между смежными блоками должны проходить через точки перелома очертания откосной линии (если поверхность откоса имеет сложное очертание);

— целесообразно при разбивке призмы обрушения на расчетные блоки ширину блоков принимать одинаковой.

Вес каждого блока Рi определяют как:

где γl — удельный вес грунта в пределах блока, кН/м 3 ;

Si — площадь i-го блока, определяется как площадь трапеции или треугольника, м 2 ; 1 – толщина i-го блока, равна 1,0 м.

Вес каждого блока Рi раскладывается на нормальную Ni и касательную Qi составляющие, приложенные в точке пересечения линии действия силы тяжести с поверхностью скольжения:

где αi — угол между направлением нормали к поверхности скольжения i-го блока (в точке пересечения линии действия силы тяжести и поверхности скольжения) и линией действия силы тяжести (веса) i-го блока.

Сила сопротивления сдвигу по поверхности скольжения в пределах i-го блока, обусловленная внутренним трением, определяется по формуле:

Сила сопротивления сдвигу по поверхности скольжения в пределах блока, обусловленная действием сцепления с грунта:

Где li — длина дуги поверхности скольжения в пределах расчетного блока (принимается по хорде).

Кзап= ΣМуд / ΣМвр= или сокращая на R:

Кзап=

При откосе сложенном однородным грунтом:

где L – длина дуги поверхности скольжения, м

Для конкретного варианта строится в масштабе откос, определяется точка О по графику (рис.4.2), строится поверхность скольжения, оползневое тело разбивается минимум на 5 расчетных блоков, определяется Ni и Qi для каждого блока и коэффициент запаса устойчивости.

ПРИМЕР РАСЧЕТА. Исходные данные: высота Н=12 м; склон сложен суглинком с параметрами: γ=19,9 кН/м 3 ; φ=20,5 0 ; с=40 кПа; крутизна склона характеризуется углом наклона линии склона к горизонту β=40 0 .

Требуется: оценить устойчивость склона.

Расчетная схема склона показана на рис. 4.3.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА

По графику Ямбу (рис. 4.2) определяются координаты центра тяжести вращения О:

Радиусом R=20,6 м из центра О проводится поверхность скольжения (рис. 4.3). Радиус R поверхности скольжения определяется по расстоянию от центра вращения О до точки пересечения нижнего горизонта откоса и откосной линии.

Оползневое тело (призма обрушения) разбивается на ряд блоков (не менее 5-ти).

Определяется длина поверхности скольжения в пределах каждого блока li угол αi (по тангенсу угла наклона), а также Pi; Ni; Qi:

мкНкНкН
l1=3α1=10 0P1=19,9´(3,0 +1,4)/2=53,7N1=53,7´0,98=52,6Q1=53,7´0,17=9,1;
l2=3,2α2=18 0P2=19,9´3(1,8+3,3)/2=152,2N2=152,2´0,95=144,6Q2=152,2´0,31=47,2;
l3=3,3α3=29,5 0P3=19,9´3(3,3·4,0)/2=217,9N 3=217,9´0,87=189,6Q3=217,9´0,49=106,8;
l4=3,8α4=38 0P4=19,9´3(4+4,2)/2=244,8N 4=244,8´0,79=193,4Q4=244,8´0,62=151,8;
l5=3,4α5=51 0P5=19,9´2,3(4,2+3,6)/2=178,5N 5=178,5´0,63=112,4Q5=178,5´0,78=139,2;
l6=4,0α6=58 0P6=19,9 ´ (2+3,6)/2=71,6N 6=71,6´0,53=37,9Q6=71,6´0,85=60,9.

Кзап=

Из расчета следует, что откос находится в устойчивом состоянии и характеризуется минимальным коэффициентом запаса Кзап=2,1.

Варианты расчетного задания № 4

Оценить степень устойчивости склонов и откосов методом кругло-цилиндрической поверхности скольжения (КЦПС).

Номер варианта задания определяется по сумме трех последних цифр шифра студента.

Оценить устойчивость склона высотой Н=12,0 м. Склон сложен неокомской глиной с параметрами: , ,

Сw=12,5 кПа. Крутизна склона характеризуется углом наклона линии склона к горизонту .

Оценить устойчивость склона высотой Н=14,0 м. Склон сложен

суглинком с параметрами: , , Сw=90 кПа. Крутизна склона характеризуется углом наклона линии склона к горизонту .

Методы расчета устойчивости откосов

Метод круглоцилиндрических поверхностей скольжения

Реальные грунты , как правило, обладают не только сцеплением, но и трением. В связи с этим проблема устойчивости откосов становится значительно сложнее, чем в рассмотренных случаях. Поэтому на практике для решения задач в строгой постановке, большое распространение получил метод круглоцилиндрических поверхностей скольжения.

Теория предельного равновесия грунтов, развитая В.В. Соколовским, позволяет решать задачи двух типов:

  • задан угол наклона плоского откоса, определяется интенсивность
    внешней нагрузки на верхней горизонтальной поверхности грунта, офаниченного откосом массива;
  • задана интенсивность нагрузки на верхней горизонтальной поверхности грунта, офаниченного откосом массива, определяется форма равноустойчивого откоса, находящегося в предельном напряженном состоянии.
    Задача первого типа, при однородных грунтах и плоском откосе ( рис. 9.6 ) решена В.В. Соколовским в безразмерных величинах q ( табл. 9.1 ).

Рис. 9.6. Схема к расчету устойчивости плоского откоса по теории предельного равновесия

Таблица 9.1. Значения безразмерного коэффициента q

XПри φ, град.
10203040
При α, град.
10102010203010203040
8,37,514,812,710,924,319,615,755,941,430,622,5
19,68,220,616,613,139,828,820,3126,081,150,931,0
210,88,925,419,915,052,936,724,2186,0115,068,438,1
311,89,629,823,016,765,144,127,8243,0148,084,944,4
412,810,234,025,818,376,851,231,1299,0179,0101,050,4
513,710,838,028,719,988,358,134,3354,0211,0117,056,2
614,511,341,831,421,499,665,037,4409,0241,0132,061,7

Исходными уравнениями для решения этой задачи являются:

(9.8)

(9.9.)

(9.10)

Выражения (9.8) и (9.9), как было выше сказано, представляют дифференциальные уравнения равновесия, а (9.10) — условие предельного равновесия.

Предельная нагрузка на верхней горизонтальной поверхности откоса, зная q , определяется из выражения

(9.11)

где q — безразмерный коэффициент, зависящий от углов внутреннего трения φ, угла α и расстояния х от края откоса до рассматриваемой точки ( см. табл. 9.1 ).
Задача второго типа для случаев, когда на верхней горизонтальной поверхности откоса распределена равномерная нагрузка (по В.В. Соколовскому):

(9.12)

и надо найти равноустойчивый откос.

Для случаев, когда с≠0 и φ≠0, с помощью численного интегрирования дифференциальных уравнений получены очертания равноустойчивых откосов в безразмерных коэффициентах, которые представлены на рис. 9.7.

Согласно рис. 9.7 для нахождения действующего очертания равноустойчивого откоса определяют Х и Z :

(9.13)

и строят равноустойчивый откос, начиная с его верхней кромки.

При угле внутреннего трения φ = 0 устойчивость откоса определяется силами сцепления:

(9.14)

где с — удельная сила сцепления, обеспечивающая устойчивость откоса; Q — масса призмы обрушения ( рис. 9.8,а ) равная Q= γ·h ; h — высота откоса; γ — удельный вес оползающего грунта; r — плечо сиилы относительно центра О ; l — длина дуги поверхности скольжения.

Рис.9.7. Графики для построения равноустойчивых контуров откосов в безразмерных координатов

Рис. 9.8. Схемы к расчету устойчивости откоса:
1- зависимость ∟α от β; 2 — зависимость ∟θ от ∟β; γ — удельный вес оползающего грунта; r — плечо силы относительного центра О ; R — радиус поверхности скольжения; l — длина дуги поверхности скольжения.

Откос находится в устойчивом состоянии, если величина фактической силы сцепления с будет больше или равна критической с cv или максимальной удельной силе сцепления:

(9.15)

Вероятная поверхность скольжения пройдет через подошву откоса по такой дуге окружности, для которой требуется c cv . При известном значении угла β значения углов α и θ и, следовательно, положение центра О определяют по графику Феллениуса ( см. рис. 9.8,6 ).

Большое распространение на практике получил метод круглоцилиндрических поверхностей скольжения, сущность этого метода заключается в отыскании круглоцилиндрической поверхности скольжения с центром в некоторой точке О, проходящей через подошву откоса, для которой коэффициент устойчивости будет минимальным ( рис. 9.9 ).

Рис. 9. 9. Схема к расчету устойчивости откоса методом круглоцилиндрической поверхности скольжения

Расчет ведется для отсека, для чего оползающий клин ABC разбивается на n вертикальных отсеков. Делается предположение, что нормальные и касательные напряжения, действующие по поверхности скольжения, в пределах каждого из отсеков оползающего клина определяются весом данного отсека Q i , и равны соответственно:

(9.16)

(9.17)

Здесь
A i — площадь поверхности скольжения в пределах i -го вертикального отсека, A i = 1l i ; l i — длина дуги скольжения в плоскости чертежа ( см. рис. 9.9 ).

Препятствующее оползанию откоса сопротивление сдвигу по рассматриваемой поверхности в предельном состоянии

(9.18)

Из (9.16)—(9.18) следует выражение для силы сопротивления сдвигу в пределах i -го отсека:

(9.19)

Устойчивость откоса можно оценить отношением моментов удерживающих M s,l и сдвигающих M s,a сил. Соответственно коэффициент запаса устойчивости определим по формуле

(9.20)

Момент удерживающих сил относительно О представляет собой момент сил Q i :

(9.21)

Момент сдвигающих сил относительно точки О

(9.22)

Тогда формулу (9.19) можно записать в следующем виде:

(9.23)

При наличии подземных вод учитывают фильтрационное давление, которое будет уменьшать устойчивость откоса. Фильтрационное давление определяют как нормальную составляющую:

(9.24)

для i -й призмы или отсека

где А’ — площадь, занятая фильтрационным потоком в оползающей призме грунта, равная А’ = А’ 1 + А’ 2 + А’ 3 ( рис. 9.10 ); γ ω — удельный вес воды.

Рис. 9.10. Схема к определению площади, занятой фильтрационным потоком

Фильтрационное давление влияет только на нормальную составляющую формулы (9.23).

Устойчивость откоса согласно изложенной расчетной методике обеспечена, если k s >1. При проектировании сооружений коэффициент устойчивости назначают обычно в пределах 1,2—1,3.

Для решения практических задач установлен следующий порядок расчета. Из некоторого произвольного центра О 1 радиусом R через точку С проводят поверхность скольжения (см. рис. 9.9). Участок откоса, ограниченный дугой АС и ломаной линией откоса ABC , разбивают на ряд призм равной ширины, массу которых подсчитывают как площади соответствующих фигур, умноженных на удельный вес грунта. При наличии в откосе грунтов с различным удельным весом строят фиктивный профиль с удельным весом, приведенным к одному из имеющихся.

Далее по формуле (9.23) определяют коэффициент устойчивости. После того повторяют построения и расчеты при цилиндрических поверхностях скольжения, проведенных из новых центров О 2 , О 3 и т.д. до тех пор, пока не будет найдено минимальное значение ks на первой вертикали. Аналогично проводят расчет, определяя минимальное значение коэффициента устойчивости для второй вертикали, строя круглоцилиндрические поверхности, проведенные из центров O 4 , O 5 , O 6 . Затем такие же расчеты повторяют для третьей, четвертой и т.д. вертикалей, пока не будет определен самый минимальный коэффициент устойчивости. Поверхность скольжения, имеющая наименьшую величину k s , будет наиболее вероятной поверхностью скольжения грунтов склона.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector