Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что означает устойчивость откосов

Расчет устойчивости откосов

При разработке котлованов, устройстве выемок и насыпей, планировке площадок с уступами, возведении сооружений на склонах и в некоторых других случаях возникает необходимость в оценке устойчивости грунтов в откосах. Устройство очень кpyтыx откосов может вызвать нарушение его устойчивости и привести к авариям пологие откосы значительно удорожают строительство, поэтому задачей проектировщика является отыскание оптимальной крутизны откоса.

Основные виды нарушения устойчивости откосов:

оползни вращения, когда массы грунта сползают по криволинейным поверхностям скольжения (рис. 2.16, а);

— оползни скольжения (прислоненный откос), когда массы грунта сползают по подстилающей породе (рис. 2.16, 6);

— оползни разжижения, когда в результате каких-либо воздействий происходит разжижение грунтов и разжиженные массы перемещаются как вязкая жидкость;

— оползни медленного течения, когда грунт как очень вязкое тело постепенно сползает по склону, при этом поверхностные слои перемещаются быстрее ниже расположенных (рис. 2.16, в);

— обвалы, когда перемещаются поверхностные слои грунтов, не обладающие сцеплением;

— оползни обрушения, когда разрушается основание откоса (выдавливанием, суффози­ей и т. п.) И часть массива грунта откалывается, а иногда даже опрокидывается (рис. 2.16, г). Рис. 2.16. Основные виды оползней.

Потеря устойчивости отко­сов происходит в силу следующих причин:

1. устранение естественной опоры грунта в результате разработки траншеи и котлованов;

2. увеличение внешней нагрузки на откос (складирование материалов, возведение сооружений);

3. устройство недопустимо крутых откосов;

4. увеличение веса и снижение сцепления и трения грунта при его увлажнении.

В ряде случаев нарушение устойчивости происходит в результате влияния нескольких причин. Обследования большинства оползней показали, что в однородных грунтах, обладающих трением и сцеплением, потеря уcтойчивости откосов происходит в результате смещения массива грунта по круглоцилиндрической поверхноcти скольжения.

Сущноcть этого, метода заключается в следующем. Задаваясь углом вращения О откоса АВ (рис. 2.17), по радиусу R проводят поверхнocть скольжения АС через точку А, затем призму обрушения АВС делят на n* отсеков и суммируют вес каждого отсека с внешней нагрузкой (при наличии последней), прикладывая равнодействующую в точке, расположенной на поверхности скольжения. Эту силу Рi раскладывают на две составляющие: нормальную Ni к заданной поверхности и касательную Ti. Учитывается также и сцепление грунта по всей поверхности скольжения. Коэффициент надежности откоса в этом случае вычисляется как отношение момента удерживающих сил, к которым относятся силы трения, сцепления и касательная составляющая веса удерживающих отсеков к моменту сдвигающих сил (касательная составляющая веса сдвигающих отсеков). Если в этом отношении сократить радиус вращения, то получим

где fi=tgφ1,ci — соответственно коэффициент внутреннего трения и сцепления і-го участка; li— длина дуги скольжения на i-м участке; Niiсоsα — нормальная составляющая; Tirt=Pisina- касательная составляющая, действующая против движения призмы обрушения; Tis — то же, но направленная по ходу движения призмы.

В общем случае через точку А можно провести бесконечное множество поверхностей скольжения, поэтому на практике расчет осуществляют по специальной методике, для нескольких (минимум четырех) центров вращения О с определением минимального значения γn. Сущность такого приема заключается в следующем: из верхней точки откоса В проводят наклонную линию под углом 360 к горизонту (рис. 2.18). На этой линии располагают точки 01′ 02′ ОЗ’ 04,. на расстояниях, указанных на рис. 2.18, где m=ctga. Эти точки принимают в качестве центров вращения. Проводят сле­ды круглоцилиндрических поверхностей скольжения АС1. АС2. АСз. А.С4,. и для каждой точки поверхности вычисляют значение коэффи­циента запаса устойчивости по формуле (2.22). Затем откладывают некотором масштабе значения a11-1; a22-1; a3=γ3l; а44 -1 в виде отрезков, перпендикулярных линии В04 в соответствующих точках. Через концы этих отрезков строят плавную кривую. К этой кривой проводят касательную, параллельную линии ВО 4′ и точку касания проецируют на линию ВО 4′ для полученной точки О делают пятое построение, аналогичное рис. 2.17, и по формуле (2.22) находят минимальное значение коэффициента запаса устойчивости, которое должно быть не менее 1,1. 1,3 в зависимости от класса сооружения.

Если в основании откоса залегают относительно слабые грунты с углом внутреннего трения менее 100, необходимо дополнительно рассматривать возможность потери устойчивости по круглоцилиндрической поверхности, указанной пунктиром на рис. 2.18, с выпира­нием грунтов основания откоса.

Устойчивость прислоненного откоса определяется, если можно наметить вероятный сдвиг масс грунта по ломаной поверхности скольжения (рис. 2.19).

Оползающий массив грунта разбивают вертикальными плоскостями на ряд отсеков и рассматривают силы, действующие на каждый из них, начиная сверху вниз.

При рассмотрении i-го отсека учитывают приложенную к нему внешнюю нагрузку и силу тяжести грунта отсека, сумму которых Q, раскладывают на два направления: перпендикулярное плоскости сдвига этого отсека по основанию и параллельное ей. Нормальная сила Н, позволяет учесть силы трения ПО основанию Ai Вi. Кроме того, учитывают сцепление грунта при сдвиге по этой плоскости. Дополнительно на отсек действуют неуравновешенное оползневое давление от вышележащих отсеков Еi-I и неизвестное оползневое давление на нижележащие отсеки Ei. Рассмотрение уравнений равновесия (сумм проекций всех сил на направление Аi Вi и нормаль к этому направлению) позволяет найти значение оползневого давления Еi передаваемого на следующий отсел. Расчет начинают с первого отсека, на который не давит сверху оползневое давление, т. е. для которого Еi-I =0. Переходя от отсека к отсеку, достигают последнего отсека, который должен быть устойчивым при Еi-1≤0, т. е. сила Еi должна иметь противоположное (отрицательное) направление.

Чтобы откос имел определенный запас устойчивости, сдвигающие силы от собственного веса и внешних нагрузок увеличивают на коэффициент запаса устойчивости γi.

При расчете устойчивости по круглоцилиндрическим поверхностям и прислоненных откосов можно учитывать слоистость и даже линзообразность залегания отдельных грунтов, фильтрационное давление потока грунтовых вод и сейсмические воздействия.

|следующая лекция ==>
Деформации оснований|Проектирование подпорных стенок

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Устойчивость откосов и склонов

  • Авиация и космонавтика
  • Административное право
  • Английский язык
  • Арбитражный процесс
  • Архитектура
  • Астрология
  • Астрономия
  • Банковское дело
  • Безопасность жизнедеятельности
  • Биографии
  • Биология
  • Биология и химия
  • Биржевое дело
  • Ботаника и сельское хозяйство
  • Бухгалтерский учет и аудит
  • Валютные отношения
  • Ветеринария
  • Военная кафедра
  • География
  • Геодезия
  • Геология
  • Геополитика
  • Государство и право
  • Государство и право
  • Гражданское право и процесс
  • Делопроизводство
  • Естествознание
  • Журналистика
  • Зарубежная литература
  • Зоология
  • Издательское дело и полиграфия
  • Инвестиции
  • Информатика
  • Информатика, программирование
  • Исторические личности
  • История
  • История техники
  • Кибернетика
  • Коммуникации и связи
  • Компьютерные науки
  • Косметология
  • Краткое содержание произведений
  • Кредитование
  • Криминалистика
  • Криминология
  • Криптология
  • Кулинария
  • Культура и искусство
  • Культурология
  • Логика
  • Логистика
  • Маркетинг
  • Математика
  • Медицина
  • Медицинские науки
  • Международное публичное право
  • Международное частное право
  • Международные отношения
  • Менеджмент
  • Металлургия
  • Москвоведение
  • Музыка
  • Муниципальное право
  • Налогообложение
  • Наука и техника
  • Начертательная геометрия
  • Новейшая история, политология
  • Оккультизм и уфология
  • Остальные рефераты
  • Педагогика
  • Полиграфия
  • Политология
  • Право
  • Предпринимательство
  • Промышленность, производство
  • Психология
  • Психология, педагогика
  • Радиоэлектроника
  • Реклама
  • Религия и мифология
  • Риторика
  • Сексология
  • Социология
  • Сочинения по литературе и русскому языку
  • Статистика
  • Страхование
  • Строительные науки
  • Строительство
  • Схемотехника
  • Таможенная система
  • Теория организации
  • Теплотехника
  • Технология
  • Товароведение
  • Транспорт
  • Трудовое право
  • Туризм
  • Уголовное право и процесс
  • Управление
  • Управленческие науки
  • Уфология
  • Физика
  • Физкультура и спорт
  • Философия
  • Финансовые науки
  • Финансы
  • Фотография
  • Химия
  • Хозяйственное право
  • Цифровые устройства
  • Экологическое право
  • Экология
  • Экономика
  • Экономико-математическое моделирование
  • Экономическая география
  • Экономическая теория
  • Эргономика
  • Этика
  • Юридические науки
  • Юриспруденция
  • Языковедение
  • Языкознание, филология
Общие положения

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Читать еще:  Что делать если откосы выдавило пеной

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Рис. 1. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а) – расчетная схема; б) – определение положения наиболее опасной поверхности скольжения; 1, 2, … — номера элементов.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов (тогда и долгое время назывался методом шведского геотехнического общества).

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 1, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра . Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

где и — моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

Для определения входящих в формулу (1) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т.д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

Соответственно момент сил, вращающих отсек вокруг 0, определился как

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

где — длина дуги основания i-го элемента, определяемая как . Здесь — ширина элемента)

Отсюда момент сил, удерживающих отсек, будет иметь вид

Учитывая формулу (1), окончательно получим

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задавясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис.1,б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

Мероприятия по повышению устойчивости откосов и склонов.

Одним из наиболее эффективных способов повышения устойчивости откосов и склонов является их выполаживание или создание уступчатого профиля с образованием горизонтальных площадок (берм) по высоте откоса. Однако это всегда связано с увеличением объемов земляных работ. При относительно небольшой высоте откосов может оказаться эффективной пригрузка подошвы в его низовой части или устройство подпорной стенки, поддерживающей откос. Положительную роль также играют закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит.

Важнейшим мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывается устройством нагорных канав, отведением воды с берм. Подземные воды, высачивающиеся на поверхности откоса или склона, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости разрабатываются сложные конструктивные мероприятия типа прорезания потенциально неустойчивого массива грунтов системой забивных или набивных свай, вертикальных шахт и горизонтальных штолен, заполненных бетоном и входящих в подстилающие неподвижные части массива. Используется также анкерное закрепление неустойчивых объемов грунта, часто во взаимодействии с подпорными стенками или свайными конструкциями.

Ответы на экзаменационные вопроси (Назначение земляного полотна (ЗП) и требования, предъявляемые к нему. Особенности конструкций земляного полотна в сложных условиях. Устойчивость откосов и склонов. Рельсы (назначения и требования к ним)) , страница 4

Откосы искусственные ,а склоны естественные наклонные пов-ти и все типы ЗП имеют такие пов-ти кроме нулевых мест. Пов-ти на кот. происходит смещение грунтов криволинейны. В однородных грунтах эти пов-ти в различной степени напоминают чашеобразное или цилиндрическое, а в сыпучих грунтах они приближены к плоскости. Иногда смещение происходит по контакту разнородных слоев грунтов и в этом случае они имеют любую форму. Устойчивость откоса или склона количественно можно оценить коэф-м устойчивости (К) представляет собой отношение факторов сопротивляющихся смещению к факторам его вызывающих. Оценку устойчивости рассматривают в плоской задачи имея ввиду ,что склоны и откосы явл. протяженными в длину грунтовыми массивами. Всё многообразие природных явлений связанных с нарушением устойчивости можно привести к 3-м моделям:

1 Пов-ть смещения имеет произвольную форму т.е. предопределена литологическим строением

2 Пов-ть смещения круглоцилиндрическая в плоской задачи круговая кривая

3 Пов-ть смещения плоская

n-кол-во отсеков. Наибольшее распространение получил 2-й метод.

При любой форме возможного смещения на любой отсек действуют ряд сил.Учитывая что в пределах отсека пов-ть смещения принимается плоской. Внешней силой явл. равнодействующей всех сил действующий на i-й отсек. Это м.б. сумма свеса грунта в пределах отсека и давления от веса ЗП или сейсмической силы.

Влияние воды на устойчивость откосов и склонов (атмосферной, инфильтрующейся в земляное полотно или склон, грунтовой, поймен­ной) многообразно.

Рассмотрим влияние воды на устойчивость откосов на примере вли­яния пойменной (паводковой) воды на устойчивость пойменных насы­пей. Паводковая вода оказывает комплекс воздействий на грунты зем­ляного полотна. По мере подъема и стояния паводковых вод в пой­ме вода инфильтруется в грунт насыпи. Изменение уровня воды в пой­ме за время паводка характеризуется гидрографом паводка. В зависи­мости от рода грунта, его плотности, водопроницаемости грунта насы­пи и основания, геометрических размеров насыпи и гидрографа павод­ка могут быть различные случаи насыщения пойменной водой попереч­ного сечения насыпи. Расчетным для учета наиболее неблагоприятного сочетания условий принят случай, когда водопроницаемый грунт на­сыпи после длительного подъема и стояния воды в пойме оказывается насыщенным водой до отметки наивысшего уровня воды (НУВ). Предполагается, что при начале спада паводка вода из поймы ухо­дит мгновенно и здесь же начинается эксфильтрация пойменной воды из грунта насыпи под воздействием сил гравитации, при этом верхний уровень очерчивается кривой депрессии. Над ним располагается зона сплошного капиллярного насыщения. Такая расчетная модель предло­жена К. С. Ордуянцем.

Читать еще:  Дверной проем с широкими откосами

Влияние воды при использовании этой модели учитывается в из­менении следующих параметров.

1. Изменение удельного веса грунта у в зоне полного водонасыще-нияи сплошного капиллярного насыщения, что учитывается при рас­чете веca грунта Q. Например (см. рис.1), рассмотрим 4-й отсек:

в верхней зоне грунт природной влажности, его удельный вес Y. площадь, занимаемая этим грунтом в отсеке, w;

в зоне сплошного капиллярного насыщения вода является допол­нительной нагрузкой, поэтому удельный вес грунта брутто

где γs — удельный вес частиц грунта, Н/м 3 ; γb — удельный вес воды, Н/м 3 .

Площадь, занимаемая этим грунтом в отсеке, w 11 . Обычно высота капиллярного поднятия dKan = 0,2—0,3 м для песков и dкan = 2—3 м для глин;

в зоне насыщения грунта пойменной водой при водопроницаемом основании будет иметь место противодавление и удельный вес грунта определяется с учетом взвешивающего действия воды:

Площадь, занимаемая этим грунтом в отсеке, w′′′. Если основание водонепроницаемое, то в этой части отсека γ = γбр.

Площадь w iv занята грунтом основания, имеющем γосн.

Изменение веса грунта существенно влияет на устойчивость отко­са или склона.

Расчет ведется на 1 м длины откоса или склона.

рис1-Схема расчетной модели К. С. Ордуянца

2. Учет фильтрационного (гидродинамического) давления, возни­кающего при высачивании пойменной воды из насыпи или фильтра­ции грунтовой воды в склоне. Это силы давления на частицы грунта движущейся в порах воды. Движение воды в насыпи, как известно, ха­рактеризуется гидродинамической сеткой, параметры которой (зна­чения гидравлического градиента I в каждой расчетной точке) долж­ны при

ниматься в расчет. Однако для простоты и удобства при расчетах устойчивости пойменных насыпей расчет фильтрационного давления dj производится по среднему значению Ii для любого отсека или среднему I для данного грунта при учете равнодействующей Do элементарных гидродинамических сил/

Значения I колеблются от 0,003 до 0,200 для песков и глин соот­ветственно.

Силы di и Do считаются целиком сдвигающими.

3. Учет изменения сил сопротивления сдвигу при водонасыщении необходим в связи с тем, что при заполнении пор грунта паводковой водой сопротивление его сдвигу значительно падает. При влажности полного водонасыщения wsat удельное сцепление csat может быть меньше на 30—40 % по сравнению с с грунта в состоянии природной влажности, а угол внутреннего трения φsat — на 15—25 % по срав­нению с φ.

17. Деформации и болезнь ЗП.

Наибольшее распр-е по бывшему Союзу имеют деформации осн-й площадки ЗП и пучины. На сети жд(в РБ) протяжённость больных мест доходит до 15% и если эти 15% принять за100%, то деформ-и можно распред-ть след-м обр-м: оседание и выпирание-3%, деформ-и осн-й площадки ЗП-36%, пучины-34%, расползание, провалы, осыпи, лавины, оползни и сдвиги-10%, размывы и подмывы-12%, повреждение и заграмождение-5%. Оседание и выпирание-это сравнит-но медленно протекающие во времени опускание осн-й площадки ЗП на значительные протяжения. Они происходят в рез-те уплотнения грунта под нагрузкой веса насыпи и поездов из-за выпирания грунта из-под основания насыпи. Деф-ции осн-й площ-и ЗП образуются в следствие: уплотнение грунта под осн-й площ-й, выпирание грунта в подшпальной части, неправильного возведения ЗП. Кним относятся балластные корыта, ложа и мешки. Расползание-это последствие грубых нарушений тех=х условий на сооружаемом ЗП(отсыпка насыпи мокрыми грунтами). Провалы-могут случиться в следст-и размыва торфяной корки на болотах, из-за размыва кровли над горными выработками при её оседании. При обвалах происходит падение и опрокидывание грунтовых масс, к кот. относятся камни, глыбы, снег, снежные завалы, осыпи. Сдвиги происх-т из-за увлажнения грунтов осн-я под насыпью поверхност-ми водами, выходящими на пов-ть склонов под насыпью, также могут быть по наклонному дну болота. Оползни- перемещение грунта по грунту без падения или опрокидывания смещающихся грунтовых масс. Деформ-и ЗП и устройства при нём из-за размывов и подмывов встреч-ся как в горных, так и в равнинных районах. Они хар-ся быстрым развитием и опасными последствиями. Различают размывы соор-й постоян-и и врем-ми потоками(реками, ручьями), также волновым возд-м(моря, озёра).

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Устойчивость откосов и склонов

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Читать еще:  Условный срок как откос от армии

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Рис. 1. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а) – расчетная схема; б) – определение положения наиболее опасной поверхности скольжения; 1, 2, … — номера элементов.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов (тогда и долгое время назывался методом шведского геотехнического общества).

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 1, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра . Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

, (1)

где и — моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

Для определения входящих в формулу (1) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т.д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

; (2)

Соответственно момент сил, вращающих отсек вокруг 0, определился как

(3)

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

, (4)

где — длина дуги основания i-го элемента, определяемая как . Здесь — ширина элемента)

Отсюда момент сил, удерживающих отсек, будет иметь вид

. (5)

Учитывая формулу (1), окончательно получим

. (6)

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задавясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис.1,б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

Мероприятия по повышению устойчивости откосов и склонов.

Одним из наиболее эффективных способов повышения устойчивости откосов и склонов является их выполаживание или создание уступчатого профиля с образованием горизонтальных площадок (берм) по высоте откоса. Однако это всегда связано с увеличением объемов земляных работ. При относительно небольшой высоте откосов может оказаться эффективной пригрузка подошвы в его низовой части или устройство подпорной стенки, поддерживающей откос. Положительную роль также играют закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит.

Важнейшим мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывается устройством нагорных канав, отведением воды с берм. Подземные воды, высачивающиеся на поверхности откоса или склона, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости разрабатываются сложные конструктивные мероприятия типа прорезания потенциально неустойчивого массива грунтов системой забивных или набивных свай, вертикальных шахт и горизонтальных штолен, заполненных бетоном и входящих в подстилающие неподвижные части массива. Используется также анкерное закрепление неустойчивых объемов грунта, часто во взаимодействии с подпорными стенками или свайными конструкциями.

Устойчивость откосов и склонов

Откос – необходимый элемент всех сооружений из грунта – насыпей, дамб, плотин и выемок, карьеров, котлованов. Природный откос называется склоном. Элементы простого откоса: высота Н, заложение В, угол наклона α, бровка т. А (рис. 4.4, а). Откосы могут иметь сложное очертание с различными углами наклона по высоте и горизонтальными площадками (бермы, рис. 4.4 б). Крутизна откоса задается в виде 1 : m, где m=B/H. Например, при α = 45˚ m = 1; при α= π/2, m = 0 имеем вертикальной откос (рис. 4.4, в).

В некоторых случаях устойчивость откосов можно оценить из условия предельного равновесия. Пусть, например, в откосе из песчаного грунта с углом внутреннего трения φ призма АВД, отсеченная плоскостью под углом α, находится в состоянии предельного равновесия (рис. 4.5).

Тогда вес призмы Q можно разложить на две силы: сдвигающую Тсдв, действующую в плоскости сдвига и нормальную N, обуславливающую появление удерживающей силы Туд. Из схемы очевидно:

Тсдв= Q·Sinα; Туд.= N· tgφ = Q·Cosα· tgφ (4.9)

Приравнивая, получаем УПР для песчаного откоса (при С = 0): α = φ

Угол α, образуемый песком при свободной отсыпке его на горизонтальную плоскость, называется углом естественного откоса.

Соответственно условием устойчивости такого откоса будет α

Подставляя их в УПР (2.16) и разрешая полученное выражение относительно hкр, получаем:

(4.11)

Задачи об устойчивости откосов решаются строго на основе системы уравнений ТПР (4.6; 4.7). Известно два варианта таких задач:

1) Задано очертание откоса и характеристики грунта φ, с, γ. Определяется нагрузка на поверхности, при которой грунт находится в предельном равновесии.

2) Задана интенсивность нагрузки на верхней горизонтальной поверхности. Требуется установить такое очертание откоса, при котором грунт будет в предельном равновесии (это задача об очертании равноустойчивого откоса).

На практике для слоистых откосов, сложенных песчаными и пылевато-глинистыми грунтами, расчет устойчивости часто проводится методом круглоцилиндрической поверхности скольжения (методом отсеков).

Предполагается, что потеря устойчивости откоса может произойти в результате вращения части массива грунта относительно т. О (рис. 4.6).

Кривая скольжения принимается дугой окружности с радиусом R и центром в т. О. Коэффициент устойчивости здесь выражается отношением моментов удерживающих и сдвигающих сил:

. (4.12)

Для их определения массив, выделенный поверхностью скольжения, разбивается на отдельные отсеки и вычисляется вес каждого отсека Qi. Если на поверхности данного отсека задана нагрузка, она также включается в Qi. Силы Qi считаются приложенными к основанию отсека и раскладываются на нормальную Ni и касательную Тi составляющие к дуге скольжения:

Моменты сил будут равны:

;

,

где — длина дуги в пределах каждого отсека.

Отношение моментов по (4.12) дает формулу коэффициента устойчивости:

. (4.13)

Смысл коэффициента устойчивости такой: при К > 1 откос устойчив; при К 1 должно выполняться для наименьшего коэффициента устойчивости, рассчитанного для опаснейшей поверхности скольжения. Они устанавливаются проведением серии расчетов для различных положений центра и значений радиуса R. Нормативные коэффициенты устойчивости (надежности) назначаются при проектировании больше единицы в пределах 1,2…1,5. Запас надежности необходим из-за приближенности расчетной схемы, неоднородности грунтов, неточности определения их характеристик и других факторов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector