Npdpk.ru

Стройжурнал НПДПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подключить углеродное волокно

ОПИСАНИЕ УГЛЕРОДНОГО ВОЛОКНА

1.1. Что такое углеродное волокно?

Исходными материалами для изготовления углеродного волокна являются органические материалы, типа пека, основой которых является акриловая смола, нефть или уголь. Коммерческое производство углеродного волокна из полиакрилонитрила и пека (изотропный пек) началось в 1970-х. Углеродное волокно используется для упрочнения композиционных материалов на основе смол, керамики и металлов.

Углеродное волокно, увеличение в 100 и 5 000 раз.

Поскольку японские изготовители с энтузиазмом занимались совершенствованием технологии и расширением производства, японское углеродное волокно имеет наилучшее качество и наибольший объем производства в мире.

Поперечное сечение углеродного волокна: x 1 500, x 3 000, x 20 000.

1.2. Достоинства углеродного волокна

Углеродное волокно легкое, прочное и «противогнилостное» — это прогрессивный функциональный материал XXI века. Он широко применяется в различных областях благодаря своим превосходным механическим характеристикам (высокой удельной прочности и упругости) и свойствам углерода (низкая плотность, низкий коэффициент теплового расширения, стойкость к высокой температуре, химическая стабильность и ненужность смазки).

1.3. Углеродное волокно, применяемое для очистки воды

Углеродное волокно для очистки воды отличается от волокна общего назначения — углеродные нити подвергаются специальной обработке, чтобы обеспечить распускание волокон в воде. Такое углердное волокно состоит из связки 12 000 сверхтонких нитей (диаметр 7μ). В воде, материал, склеивающий нити растворяется, и нити распускаются. Так как нити имеют структурированную поверхность, волокно имеет большую общую площадь поверхности.

Очистка воды и создание основы для произрастания водорослей — главные цели использования углеродного волокна в воде.

Углеродное волокно является привлекательным для микроорганизмов находящихся в воде, которые, оседая на большой поверхности нитей, образуют биопленку. Эта биопленка адсорбирует загрязнители, где они расщепляются микроорганизмами. Кроме того, микробов привлекают колебания звукового диапазона исходящие от углеродных нитей. Создается среда обитания, в которой микроорганизмы являются объектом питания простейших водных обитателей, а простейшие — объектом питания рыб. Рыбы предпочитают откладывать икру на углеродные нити, а вылупившиеся из икринок мальки пользуются распустившимися нитями как убежищем.

При изготовлении углеродного волокна по общепромышленной технологии, нити скрепляются клеящим веществом на основе эпоксидной смолы, поэтому такие волокна плохо распускаются в воде на отдельные нити. Таким образом, углеродные волокна, изготовленные по общепромышленной технологии, не подходят для использования в воде.

  • Оседание (прилипание) микробов на углеродных волокнах

На углеродных волокнах оседает больше микроорганизмов, чем на волокнах из других материалов, благодаря большой удельной поверхности волокна Miracarbon.

МатериалДиаметр нитей (μ)Удельная площадь поверхности (м²/г)Дзета — потенциал (мВ)
Углеродное волокно70,33— 10, 7
Ароматический полиамид120,22— 21,3
Полиакрилонитрил120,22— 24,9
Полиэтилен230,13— 34,5

На поверхности волокна образуется налет загрязненного ила. В налете загрязненного ила смешаны аэробные и анаэробные микроорганизмы, при этом они гораздо активнее, чем в обычных микробных пленках. Вероятность их отслаивания меньше.

  • Колебание нитей углеродного волокна

При погружении элемента из углеродного волокна в воду создается колебание нитей углеродного волокна. Это можно назвать безнасосным перемещением воды, которое вызывается повторяющимися изгибаниями и выпрямлениями нитей. Благодаря своей упругости углеродное волокно способно сохранять свою форму, а его нити, своими колебаниями, способствовать движению воды через волокно.

Колебание углеродного волокна вызывает движение воды.

Как сделать углеволокно?

Наверняка многие слышали об удивительных свойствах крабонового волокна. Однако не все знают о том, как ведётся его производство. Между тем, создать карбоновые детали можно даже в бытовых условиях.

Углелента свободно продаётся в Интернете. Всё, что потребуется от желающего создания деталей из углеродного волокна – специальные смолы, которые потребуется пропитывать несколько слоев углеленты.

Положительные стороны применения карбона

Суть заключается в том, что углеродное волокно невероятно прочное. По своим характеристикам оно может сравниться с различными деталями, но при этом и превзойти большую их часть.

Ниже представлены явные преимущества карбонового волокна:

  • обладает уникальной прочностью;
  • доступно практически каждому;
  • обладает лёгким весом.

На самом деле прочность карбона является двоякой. В пример можно привести следующую ситуацию. Если деталь будет испытывать деформацию растяжения, то карбоновые нити сохранят прочность.

Однако во время сжатия, карбон не способен противостоять действию силы и ломается. Специально для этих целей, карбоновое волокно укладывают «крест на крест», при этом добавляя резиновые нити.

Отрицательные стороны карбона

Прежде тем, использовать карбон настоятельно рекомендуется взвесить все за и против. Речь идёт о понимании условий, в которых будет эксплуатироваться карбоновая деталь.

К большому сожалению карбоновое волокно не поддаётся восстановлению. Конечно, в небе, где не имеется никакой возможности врезаться в бордюр или задеть соседний самолёт углеволокно получило большое распространение.

Однако на земле его повсеместное использование находится под большим вопросом. В пример можно привести следующий случай: бампер автомобиля при ударе потрескался. А это означает, что отремонтировать его, как, к примеру, пластиковый уже не получится.

Карбоновое волокно не подвергается восстановлению. Придётся осуществлять замену все детали целиком. Именно по этой причине автомобильные производители с большой осторожностью применяют карбоновое волокно, предпочитая его металлу (алюминий, стальные облегчённые сплавы и т.д.).

Смотрите также:

  • Знаете ли Вы, как следует выполнять монтаж натурального камня и что для этого потребуется?
  • Рекомендации, которые позволят должным образом утеплить стену снаружи — http://postroyka.org/kak-pravilno-uteplit-stenu-snaruzhi/

В видео будет представлен полный технологический процесс производства углеродного волокна:

Углеродное волокно

Углеродное волокно — материал, состоящий из тонких нитей диаметром от 5 до 10 мкм, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.

Содержание

  • 1 История
  • 2 Получение
  • 3 Дополнительная переработка УВ
  • 4 Свойства
  • 5 Применение
  • 6 См. также
  • 7 Примечания
  • 8 Ссылки

История [ править | править код ]

Впервые получение и применение углеродных волокон было предложено и запатентовано в 1880 г. американским изобретателем Эдисоном для нитей накаливания в электрических лампах. Эти волокна получались в результате пиролиза хлопкового или вискозного волокна и отличались высокой пористостью и хрупкостью.

Вторично интерес к углеродным волокнам появился, когда велись поиски материалов, пригодных для использования в качестве компонентов для изготовления ракетных двигателей. Углеродные волокна по своим качествам оказались одними из наиболее подходящих для такой роли армирующими материалами, поскольку они обладают высокой термостойкостью, хорошими теплоизоляционными свойствами, коррозионной стойкостью к воздействию газовых и жидких сред, высокими удельными прочностью и жёсткостью.

В 1958 г. в США были получены УВ на основе вискозных волокон. При изготовлении углеродных волокон нового поколения применялась ступенчатая высокотемпературная обработка гидратцеллюлозных (ГТЦ) волокон (900 °C, 2500 °C), что позволило достичь значений предела прочности при растяжении 330—1030 МПа и модуля упругости 40 ГПа. Несколько позднее (в 1960 г.) была предложена технология производства коротких монокристаллических волокон («усов») графита с прочностью 20 ГПа и модулем упругости 690 ГПа. «Усы» выращивались в электрической дуге при температуре 3600 °C и давлении 0,27 МПа (2,7 атм). Совершенствованию этой технологии уделялось много времени и внимания на протяжении ряда лет, однако в настоящее время она применяется редко ввиду своей высокой стоимости по сравнению с другими методами получения углеродных волокон.

Читать еще:  Как настроить прижим окна со стороны петель

Почти в то же время в СССР и несколько позже, в 1961 г., в Японии были получены УВ на основе полиакрилонитрильных (ПАН) волокон. Характеристики первых углеродных волокон на основе ПАН были невысоки, но постепенно технология совершенствовалась и уже через 10 лет (к 1970 г.) были получены углеродные волокна на основе ПАН-волокон с пределом прочности 2070 МПа и модулем упругости 480 ГПа. Тогда же была показана возможность получения углеродных волокон по этой технологии с ещё более высокими механическими характеристиками: модулем упругости до 800 ГПа и пределом прочности более 3 ГПа. УВ на основе нефтяных пеков были получены в 1970 г. также в Японии.

Чэнь и Чун исследовали эффект углеродного волокна с добавкой кремнезема на усадку при высыхании бетона и пришли к выводу, что объемное соотношение углеродного волокна в количестве 0,19 % (при средней длине волокна 5 мм и диаметре 10 мкм) с отношением микрокремнезема, равным 15 % от массы цемента, вызывало снижение усадки при высыхании до 84 %. Исследователи обнаружили, что использование углеродного волокна с микрокремнеземом позволяет улучшить такие свойства, как прочность при сжатии и химическая стойкость [1] .

Алхадиси Абдул Кадир и другие исследовали влияние добавки углеродного волокна на механические свойства легкого бетона. Волокно было добавлено в соотношении 0,5 %, 0,1 %, 1,5 % по объёму. Все составы характеризовалось повышенной прочностью на сжатие и прочностью на разрыв, а также сопротивлению изгибу около 30 %, 58 % и 35 %, соответственно, по сравнению с эталонной смеси [2] .

Получение [ править | править код ]

УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 1. [ прояснить ] После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.

Дополнительная переработка УВ [ править | править код ]

Углеродные волокна могут выпускаться в разнообразном виде: штапелированные (резаные, короткие) нити, непрерывные нити, тканые и нетканые материалы. Наиболее распространенный вид продукции — жгуты, пряжа, ровинг, нетканые холсты. Изготовление всех видов текстильной продукции производится по обычным технологиям, так же, как для других видов волокон. Вид текстильной продукции определяется предполагаемым способом использования УВ в композиционном материале, точно так же, как и сам метод получения композита. Основные методы получения композитов, армированных углеродными волокнами, являются обычными для волокнистых материалов: выкладка, литье под давлением, пултрузия и другие. В настоящее время выпускается ряд видов УВ и УВМ, основные из которых перечислены ниже.

  • На основе вискозных нитей и волокон:
    • нити, ленты, ткани;
    • нетканый материал;
    • активированные сорбирующие ткани;
    • активированные сорбирующие нетканые материалы.
  • На основе вискозных штапельных волокон:
    • волокна и нетканые материалы: карбонизованые и графитированые;
  • На основе ПАН-нитей и жгутов:
    • ленты и ткани ;
    • активированные сорбирующие волокна и нетканые материалы;
    • дисперсный порошок из размолотых волокон.
  • На основе ПАН-волокон:
    • Волокна и нетканые материалы: карбонизованные и графитированные.

Свойства [ править | править код ]

УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600—2000 °С в отсутствие кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300—370 °С. Нанесение на УВ тонкого слоя карбидов, в частности, SiC или нитрида бора, позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2⋅10 −3 до 10 6 Ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

Активацией УВ получают материалы с большой активной поверхностью (300—1500 м²/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.

Обычно УВ имеют прочность порядка 0,5—1 ГПа и модуль 20—70 ГПа, а подвергнутые ориентационной вытяжке — прочность 2,5—3,5 ГПа и модуль 200—450 ГПа. Благодаря низкой плотности (1,7—1,9 г/см³) по удельному значению (отношение прочности и модуля к плотности) механических свойств лучшие УВ превосходят все известные жаростойкие волокнистые материалы. Удельная прочность УВ уступает удельной прочности стекловолокна и арамидных волокон. На основе высокопрочных и высокомодульных УВ с использованием полимерных связующих получают конструкционные углеродопласты. Разработаны композиционные материалы на основе УВ и керамических связующих, УВ и углеродной матрицы, а также УВ и металлов, способные выдерживать более жёсткие температурные воздействия, чем обычные пластики.

Применение [ править | править код ]

УВ применяют для армирования композиционных, теплозащитных, химостойких и других материалов в качестве наполнителей в различных видах углепластиков. Наиболее ёмкий рынок для УВ в настоящее время — производство первичных и вторичных структур в самолетах различных производителей, в том числе таких компаний как «Boeing» и «Airbus» (до 30 тонн на одно изделие). По причине резко возросшего спроса в 2004—2006 гг. на рынке наблюдался большой дефицит волокна, что привело к его резкому подорожанию.

Из УВ изготавливают электроды, термопары, экраны, поглощающие электромагнитное излучение, изделия для электро- и радиотехники. На основе УВ получают жёсткие и гибкие электронагреватели, в том числе ставшие популярными т. н. «карбоновые нагреватели», обогревающие одежду и обувь. Углеродный войлок — единственно возможная термоизоляция в вакуумных печах, работающих при температуре 1100 °C и выше. Благодаря химической инертности углеволокнистые материалы используют в качестве фильтрующих слоёв для очистки агрессивных жидкостей и газов от дисперсных примесей, а также в качестве уплотнителей и сальниковых набивок. УВА и углеволокнистые ионообменники служат для очистки воздуха, а также технологических газов и жидкостей, выделения из последних ценных компонентов, изготовления средств индивидуальной защиты органов дыхания. Широкое применение находят УВА (в частности, актилен) в медицине для очистки крови и других биологических жидкостей. В специальных салфетках для лечения гнойных ран, ожогов и диабетических язв незаменима ткань АУТ-М, разработанная в начале 80-х годов и опробованная при боевых действиях в Афганистане [3] . Как лекарственное средство применяют при отравлениях (благодаря высокой способности сорбировать яды. Например, препарат «Белосорб», или АУТ-МИ на основе светлогорского сорбента), как носители лекарственных и биологически активных веществ. УВ-катализаторы используют в высокотемпературных процессах неорганического и органического синтеза, а также для окисления содержащихся в газах примесей (СО до CO2, SO2 до SO3 и др.). Широко применяется при изготовлении деталей кузова в автоспорте, а также в производстве спортивного инвентаря (клюшки, вёсла, лыжи, велосипедные рамы и компоненты, обувь) и т. д.

Читать еще:  Монтаж деревянных откосов окна

Углеволокно применяется в строительстве в различных системах внешнего армирования (СВА) — при его помощи усиливают железобетонные, металлические, каменные и деревянные конструктивные элементы зданий и сооружений с целью устранения последствий разрушения материала и коррозии арматуры в результате длительного воздействия природных факторов и агрессивных сред в процессе эксплуатации, а также для сейсмоусиления. Суть данного метода заключается в повышении прочности элементов, воспринимающих нагрузки в процессе эксплуатации зданий и сооружений, с помощью углеродных тканей, ламелей и сеток. Усиление строительных конструкций углеволокном повышает несущую способность без изменения структурной схемы объекта.

Углеродный (карбоновый) кабель

Углеродный или карбоновый кабель используется в качестве нагревателя для напольных покрытий. В углеродном кабеле в виде проводника выступает токопроводная основа, которая состоит из углеродного волокнистого материала. Изолятором выступает тефлон, который устойчив к высокой температуре.

  • Описание
  • Характеристики
  • Эскизы
  • Фото
  • Доставка

Углеродное волокно – это большое количество тонких нитей диаметром от 5 – 15 мкм, которые образованы атомами углерода. Это происходит за счет соединение атомов углерода параллельно друг другу в кристаллы микроскопического размера. Этот способ производства гарантирует высокую прочность и гибкость. Для углеродных волокон характерна высокая степень натяжения и маленький удельный вес. Также углеродные волокна обладают небольшим коэффициентом температурного расширения и химической инертностью.

Тонкая нить волокна из углерода обладает высокой прочностью. Волокно практически нельзя растянуть или порвать, но при этом материал обладает эластичностью. Уникальность углеродистого волокна в его огнеупорности, углерод не перегорает даже в высоких температурах, но также он морозоустойчив.

Один из самых главных плюсов углеродного кабеля – это его экономичность. Затраты по потребление электроэнергии на 30% ниже, в сравнении с его аналогами, при этом карбоновый кабель обладает большим сроком службы. Углеродная нить при подаче электроэнергии всего через 3 с от включения в сеть нагревается и также быстро остывает.

Также следует отметить, что углеродное волокно совместимо практически со всеми терморегуляторами.

Углеродный кабель с силиконовой изоляцией обладает мощностью в 25 Вт/м и температурой нагрева 180 о С. Минимальная длина карбонового кабеля для подключения – 10 м.

Кабель углеродный можно согнуть в произвольную форму, волокно не сломается даже при изгибании на 50 000 раз.

Применение

Сегодня, наиболее широко карбоновый кабель используют для напольного отопления. Провод можно проложить под мрамором, плиткой, ламинатом и специальных видов линолеума. Карбоновый кабель безопасен, поэтому может быть использован в домах, квартирах, виллах, офисных зданиях, школах, больницах, бассейнах, стадионах, в том числе в теплицах и курниках. Также в быту используют углеродные кабеля для нагрева трубопроводов, стоков.

В качестве наружного применения карбоновый кабель применяется на тротуарах, газонах и клумбах для предохранения растений от замерзаний.

В производственной среде карбоновый кабель используется для дополнительной сушки и обогрева.

Технические характеристики

Диаметр углеродного кабеля от 1,8 – 5 мм, другие под заказ;

Тестовые напряжение 4500 В;

Ток утечки 0,05 мА/м;

Сопротивление изоляции: ≥0,5 МОм; проводника: 33 Ом/м;

Мощность напряжения 25 Вт/м;

Номинальное напряжение: до 400 В;

Инфракрасные волны: 8 – 18 мкм;

Цвет силиконовый оплетки: черный, белый, красный; другие под заказ.

Купить углеродный кабель можно со склада в Москве или с доставкой в любой регион России. Электронагрев под заказ предлагает карбоновые кабеля разной длины. Консультация по техническим характеристикам, использованию мощности и цене углеродного кабеля возможна при обращении по телефону или на электронную почту компании Электронагрев.

Использование углеродного волокна в строительстве

Рубрика: Технические науки

Дата публикации: 18.11.2020 2020-11-18

Статья просмотрена: 35 раз

Библиографическое описание:

Егоров, Д. С. Использование углеродного волокна в строительстве / Д. С. Егоров, В. П. Хлопков. — Текст : непосредственный // Молодой ученый. — 2020. — № 47 (337). — С. 37-40. — URL: https://moluch.ru/archive/337/75301/ (дата обращения: 21.09.2021).

В данной статье авторы рассматривают способы использования углеродного волокна в строительной сфере. В работе выявлены исторические аспекты создания карбона, исследованы его характеристики, методы и способы применения.

Ключевые слова: углеродное волокно, строительство, карбон, углерод.

Современная строительная индустрия активно развивается, в основном, за счет внедрения новых материалов и использования инновационных технологий. Весьма актуальными являются проблемы, связанные со строительством конструкций, устойчивых к динамическим нагрузкам и агрессивным условиям окружающей среды. Для укрепления бетонных конструкций все чаще используют углеродные волокна, которые ранее широко применялись только в авиации и ракетостроении.

Сегодня углерод в той или иной форме востребован практически во всех отраслях промышленности. Его особенностью и, одновременно, важным преимуществом является то, что он может дополнять или даже заменять традиционные строительные материалы, такие как дерево, металл, стекло, бетон и др. В целом, это несет существенную выгоду как людям, так и природе. Углерод был обнаружен в 1880 году Т. Эдисоном при проведении опытов с нитью накаливания. Благодаря иностранным производителям и промышленникам углеродное волокно активно применяется в различных отраслях промышленности, в том числе в строительстве. В нашей стране многие проекты в области углеродного волокна были разработаны в советское время и сегодня активно возрождаются инженерами. Углеродное волокно является продуктом искусственного происхождения и относится к полимерам с композитной структурой. Оно формируется из тонких нитей (диаметр от 3 до 15 микрон), а нити, в свою очередь, из атомов углерода, которые объединяются в кристаллическую сетку. За счёт физических особенностей атома углерода кристаллы в сетке располагаются параллельно относительно друг друга. Такое выравнивание является ключевым фактором, который способствует повышенной прочности волокна на растяжение [5, с. 259]. Пример структурной модели углеродного волокна представлен на рис. 1.

Рис. 1. Схематическое изображение структурной модели углеродного волокна: 1 — пустоты, 2 — границы структурных поворотов, 3 — межкристаллическая граница

Читать еще:  Чем замазать внешний откос окна

Использование углеродных волокон в аэрокосмической и оборонной промышленностях, а также в сфере строительства обосновывается тем, что материал из углеродных волокон по твердости значительно превосходит металл. Яркий пример использования углеродных волокон в строительстве — это применение их в Калифорнии в 1980 году для усиления зданий в сейсмически активной зоне. В отечественном строительстве материал, как правило, используется в ремонтных работах, но его популярность и масштаб постепенно растут.

Углеродные волокна обладают относительно долгим сроком службы, это явление основано на их свойствах, которые включают в себя высокую устойчивость к процессам коррозии и отличную адгезию к поверхностям с различными структурами, а также легкость и прочность. Благодаря тому, что углеродное волокно обладает довольно малой массой, оно используется в системах армирования, что, в свою очередь, существенно снижает нагрузку на фундамент здания. Поверхность углеродного волокна является глянцевой, что позволяет исключить возможность реакции с водой. К преимуществам также относится высокая огнестойкость, ударопрочность и возможность наносить материал в несколько слоев. Проведение ремонтных работ любого типа, где возможно применение углеродного волокна, может осуществляться без прекращения эксплуатации самого здания. Материал является полностью токсически безопасным и экологически чистым, что, безусловно, является важными преимуществами с точки зрения безопасности человека и окружающей среды. Углеволокно может использоваться при армировании конструкций практически любых конфигураций, таких как ребристые поверхности, угловые и закругленные элементы, балочные сегменты рамных конструкций и др. Составляющей углеродного волокна является полиакрилнитрит, который предварительно обрабатывается высокой температурой (в пределах 3000° — 5000°С) [7, с. 98]. На рис. 2. Представлены варианты усиления конструкций композитными материалами в строительстве.

Рис. 2. Усиление конструкции композитными материалами

Вышеприведенные характеристики и параметры материала, во многом, обуславливают внешнее армирование как наиболее распространенное применение углеродных волокон в строительстве. В этом случае волокно пропитывают двухкомпонентной эпоксидной смолой, которая действует как связующая. Установка материала похожа на процесс поклейки обоев — материал просто приклеивается к поверхности конструкции, которая усиливается [2]. Использование именно эпоксидной смолы, в качестве связующего вещества, обусловлено следующими особенностями материала:

− такая смола имеет высокие адгезивные свойства по отношению к бетонным поверхностям.

− компоненты углеволокна и смолы вступают между собой в химическую реакцию, в результате которой углеводород приобретает жёсткость пластика и становится прочнее стали в 7 раз.

Благодаря всем вышеперечисленным свойствам и параметрам, углеродное волокно уверенно занимает лидирующую позицию среди композитных материалов. Прочность материала на растяжение в четыре раза выше, чем у стали высшего качества, при этом удельный вес весьма невелик: углеволокно на 75 % легче железа и на 30 % легче алюминия. Незначительное расширение материала при нагревании позволяет использовать углеродные волокна в самых различных и агрессивных климатических условиях.

Несмотря на все преимущества, углеволокно, разумеется, имеет и недостатки, которые необходимо учитывать при проведении строительных работ. Список недостатков карбона короткий, но эти недостатки обязательно должны быть учтены при планировании строительства. Как правило, выделяют три основных недостатка:

− углеродное волокно является хорошим отражателем электрических волн;

− материал имеет, сравнительно, высокую стоимость;

− изготовление композита более трудоёмкое, чем производство металла [3, с. 73].

Использование углерода позволяет успешно укреплять конструкции из дерева, кирпича или железобетона. Согласно СНиП и ГОСТ, структура, армированная таким материалом, становится прочнее на 120 % за счет сжатия и дополнительно приобретает прочность на изгиб на 65 %. В дополнение углеродное волокно можно применять для восстановления каменных конструкций, таких как, например, балки и опоры для бетонных мостов. Также, в частном строительстве, укрепление фундамента или стен с помощью углерода обеспечивает здание большим запасом прочности.

Усиление построек с помощью армирования карбоном необходимо в следующих случаях:

− конструкция была повреждена, в результате чего её несущая способность снизилась и стали появляться трещины;

− изменились условия эксплуатации помещения, возросли нагрузки на него;

− постройка здания планируется в сейсмически активной зоне;

− для устранения разрушений бетона и коррозийных процессов в арматуре, если постройка долгое время подвергалась агрессивному воздействию внешней среды [1, с. 116].

Если углеродное волокно было выбрано в качестве одного из компонентов внешней системы армирования на этапе проектирования строительства, в работу следует включить Свод правил 164.1325800.2014. Производя армирование самостоятельно, нужно учитывать, что наклеивание карбона осуществляется в зонах наибольшей нагрузки: как правило, это центральная часть пролета, которая соприкасается с нижней гранью. Для работы с изгибами можно выбрать любой тип материала — лента, сетка или планки [4, с. 65]. В процессе армирования балок может возникнуть необходимость в дальнейшем усилении приопорных зон, которые увеличивают несущую способность всей конструкции при поперечных нагрузках, для этого используют U-образные хомуты из лент или сеток.

Углеродное волокно в строительстве можно использовать для армирования зданий и сооружений из следующих материалов:

− камень. К ним относятся мачты, пилоны, кирпичные дома. Углеродное волокно применимо здесь как в процессе постройки, так и при проведении ремонтных работ;

− железобетон. Здесь углеродное волокно можно использовать для строительства гидротехнических сооружений, мостов и др;

− металл. Такие структуры имеют модуль прочности и упругости вблизи углеродного волокна, но их усиление все еще необходимо, особенно в областях с неустойчивыми грунтами.

Чтобы процесс усиления постройки прошёл максимально эффективно, следует обеспечить ряд условий, таких как отсутствие естественной влаги, надежное сцепление с поверхностью здания и использование материалов, обладающих высоким качеством для обеспечения максимальной эффективности.

Несмотря на растущую популярность использования углеродных волокон, технология их применения остается довольно сложной и трудоемкой. На сегодня углеродное волокно — это довольно дорогой материал, требующий определенных навыков его монтажа и наличия специального оборудования. Можно предположить, что дальнейшее развитие в сфере строительства коснется и ответвления углеродных волокон, что, в свою очередь, позволит совершить технолого-экономический скачок и сделает применение углеволокна в строительстве более легким и дешевым.

  1. Алимов Л. А. Строительные материалы: Учебник / Л. А. Алимов. — М.: Academia, 2018. — 317 c.
  2. Барабанщиков Ю. Г. Строительные материалы и изделия: Учебник / Ю. Г. Барабанщиков. — М.: Academia, 2019. — 368 c.
  3. Барабанщиков Ю. Г. Строительные материалы и изделия: Учебник / Ю. Г. Барабанщиков. — М.: Academia, 2015. — 64 c.
  4. Волков Г. М. Машиностроительные материалы нового поколения: Учебное пособие / Г. М. Волков. — М.: Инфра-М, 2015. — 320 c.
  5. Ганиева Т. Ф. Современные дорожно-строительные материалы: Учебное пособие / Т. Ф. Ганиева. — СПб.: Проспект Науки, 2015. — 144 c.
  6. Лукаш А. А. Новые строительные материалы и изделия из древесины: Монография / А. А. Лукаш, Н. П. Лукутцова. — М.: АСВ, 2015. — 288 c.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector